

Common borders. Common solutions.

Assessment on Chl-a concentrations & eutrophication dynamics

G Kazanjian (AUA), M Zoidou (DUTH), K Kupatadze (GRAL), V.Medinets (ONU)

PONTOS Joint Open Workshop Tbilisi, Georgia May 20, 2022

UNIVERSITY

D.T1.2.5 Objectives

- The PONTOS platform will acquire data from land and marine databases (e.g. Copernicus, MODnet, Géoservices Sextant and BLACKSEASCENE) and process space-borne images to assess the dynamics of chlorophyll concentration as an indicator of water eutrophication to operatively monitor nutrient pollution within the pilots for the period 2009-2021.
- In-situ historical and PONTOS field data (e.g. TN, DON, NO₃⁻, NH₄⁺ & TP, PO4₃⁻) will be used for establishing correlations.

Why study eutrophication?

- Indicator / outcome of anthropogenic impacts and water quality deterioration.
- Reporting of chl-*a* concentrations required measurements of the EU WFD.
- Impacts of eutrophication:

Increased BOD
Potential anoxia
Reduced biodiversity
Toxic cyanobacterial blooms
Increased undesirable emissions (CH₄, H₂S)
Loss of ecosystem services

Chl-a remote sensing

Higher reflectance in lower wavelengths (blue + green regions) at lower [chl-a]

=> Challenges in inland waters with higher chl-a + humic substances

Pilot sites

Satellites used in remote sensing

Method used

- Images downloaded from Copernicus Open Access Hub & USGS Earth Explorer
- Images then processed in SNAP with C2RCC

- Chl-a and TSM images downloaded
- Validation with *in-situ* measurements

Eutrophication dynamics (Kolkheti lowland, Georgia, Spring 2020)

□ PONTOS | Eutrophication Analysis – 20.05.2022 | gkazanjian@aua.am| Slide 9 | pontos-eu.aua.am

Common borders. Common solutions.

Eutrophication dynamics (Greece)

- 6 lagoons, 3 in the Nestos complex
- Surrounded by cultivated areas and important for fish production
- Used a Takagi-Sugeno neuro-fuzzy model
- 122 *in-situ* measurements (2015 to 2021) for training the model and validation

Eutrophication dynamics (Dniester estuary, Ukraine)

- Dniester estuary and Bile Lake
- Satellite image analysis complimented by field trips in 2021
- Tot. number of samples:
 - Chl 105
 - Hydrology obs 200
 - Nutrients 200
 - Oxygen 200
 - Phytoplankton 70
 - Bacteria 70

Chl-a concentration (SNAP calculation) in Dniester estuary for 24 April 2021 Chl-a concentration (SNAP calculation) in Dniester estuary for 20 August 2021 (purple – clouds area)

Eutrophication dynamics (Lake Sevan, Armenia)

Distinct dynamics within years (algal blooms generally appearing in July)

Upcoming steps

- Finish the eutrophication analyses and publish reports for all pilot sites
- Analyze the results from the other analyses (forest cover changes, wetlands, and agricultural water balance) to investigate their impacts on water quality
- 2nd set of trainings to stakeholders
- Prepare an online module for training to be available on the PONTOS platform

Common borders. Common solutions.

