





Common borders. Common solutions.

# Assessment on changes in wetland and floating vegetation cover

Sergiy Medinets, Artak Peloyan, Giorgi Mikeladze, Eleftherios Katsikis and PONTOS colleagues

Odessa, 20 July 2022

















Common borders. Common solutions.

# Challenges

- Complications of navigation of small vessels
- Complications of (commercial) fishing
- Excessive shading of the water body
- Excessive consumption of water-soluble oxygen
- Increased rates of siltation / sedimentation
- Substrate for filamentous algae
- Decreased surface water quality
- Decreased/ increased attractiveness for eco-tourists

# PONTOS

# Terminology:









Common borders. Common solutions.

## Aims:

- To estimate (inter-annual) changes in the area of emergent and floating vegetation cover during 2009-2021 in the pilot areas with identification of the most "vulnerable"/ overgrown areas
- To estimate annual dynamics of changes in emergent and floating vegetation cover over 2021

Additionally (optionally):

- To identify aquatic vegetation species using VHR satellite images and UAV-mosaics (selected sub-sites) and use them for validation of Sentinel-2 images
- To quantify the growth of aquatic vegetation biomass in pilots (where possible)
- To identify (semi-)submersed vegetation (where applicable) and to assess their area/density using UAV and satellite VHR images (selected sub-sites)

Ukraine: a) Coastline with beaches and recreational areas from Odessa city to the Danube river delta; b) Dniester River Delta area and adjacent estuary

> Georgia: a) Entire coastline of Georgia; b) Downstream part of Rioni river, incl. delta area and Kolkheti NP

Greece: Nestos River, its Delta and the coastal zone close to the Delta

÷

Armenia: Sevan Lake and its catchment area

PONTOS







## I. In-situ observations

- Field GPS tracking of aquatic vegetation boundaries by using a boat (historical data) [if available]
- Mapping of aquatic vegetation cover at selected sites by using UAVs (2021) [if applicable]
- Vegetation sampling at selected sites (2021) [optional]
- II. Space-born observations
- VHR images (MAXAR) processing for selected sites at selected dates
- Satellite images (Sentinel-2 for 2015-2021; LandSat for 2009-2013) processing using CERTH algorithm







#### Historical data for 2011-2021 (Ukrainian pilot case)

- Tracking of the boundaries of emergent and floating (+dense semi-submerged) vegetation with the boat-mounted GPS device of Eagle SeaCharter 640CDF GPS with horizontal accuracy of 3-5 meters (WAAS)
- Visual assessment of emergent and floating vegetation, its types and areas covered with a photo report
- Post-expeditionary processing of the results of field tracking with GIS software, production of vegetation maps, chronological analysis of changes





## Historical Field data

Satellite estimates (2005-2010) GPS-tracking (2011-2021)

Areas of

Emergent

Floating

Floating with partially dense (semi)-submerged)

vegetation in the Dniester estuary in summer period of 2000-2021











#### Mapping using Unmanned Aerial Vehicles (UAVs)

• Use of aerial images for detailed mapping (3-6 cm pixel<sup>-1</sup>) of aquatic vegetation





RGB mosaic; 5 cm/pixel

### Field data UAV mapping: PONTOS-UA

2021-06-11







Trapa natans



Black Sea

#### Phragmites australis

Vegetation sampling (e.g. Ukrainian pilot case)

Nuphar lutea

Ceratophyllum demersum











#### VHR images (MAXAR)

#### • Processing VHR images (totally 3) for selected areas (Bile lake and Dniester est.)







VHR images: PONTOS-UA



| Species/ cover type       | 2016-07-17 | 2021-07-31   |
|---------------------------|------------|--------------|
| Nuphar lutea              | 61.5%      | 58.5%        |
| Nymphaea alba             |            | 1.0%         |
| Trapa natans              | 2.2%       | 3.6%         |
| Ceratophyllum<br>demersum | 2.0%       | Not identif. |
| Water covered area        | 34.3%      | 37.0%        |





#### VHR images: PONTOS-GE

Project funded by EUROPEAN UNION



Partotskali lake covered with floating vegetation (Trapa colchica, Stuckenia pectinate, Potamogeton natans, Ceratophyllum demersum, Nuphaea lutea etc.)

- Largest habitat of floating vegetation in study area
- Carpet of the floating vegetation covered 16 out of 21.6 ha in 2016













#### Sentinel-2 images (Copernicus)

• Processing of S-2 images using automatic approach with CERTH algorithm







S2: 2019-07-02



CERTH improved algorithm



#### Space-born data Sentinel-2: PONTOS-UA

#### Floating vegetation identification





Sentinel-2: PONTOS-UA

#### Floating vegetation identification



ONU in-situ observations: 2021-07-26

emergent veg.



dense (semi-)submerged veg.



CERTH improved algorithm



Sentinel-2: PONTOS-GE

#### Inter-annual and seasonal changes of NDVI in the Partotskali lake

#### S2-derived NDVI (2017 Aug)



S2-derived NDVI (2020 Aug)



S2-derived NDVI (2018 Aug)



#### S2-derived NDVI (2021 Aug)



S2-derived NDVI (2019 Aug)



#### 2017-21 averaged NDVI values by month







#### LandSat: PONTOS-AM

#### Floating vegetation identification





#### Space-born data Sentinel-2: PONTOS-AM Project funded by Floating vegetation identification EUROPEAN UNION 2016-14-09 2018-08-30 2019-08-15 2017-08-20 TANK CONTRACTOR CONTROL 2010 CONTROL OF THE ALCONY ITS C. B. LOWER CONTRACTOR STATES NDVI ----Construction of the local distance of the lo ARCONANT. Serence and 1 100 100 E. 8----Floating vegetation cover variation over 2016-2019 the state of the state of the state the state of the s C. T. State of States Year Area, ha NDAVI 2016 174 THE R P. LEWIS CO., NAME OF CORR. CORR. Selection and all 100 2017 179 = 2018 154 The Transformer School The second states of CONTRACTOR OF classification 2019 189.6 LULC Ĩ







Common borders. Common solutions.

## Дякуємо за увагу! Շնորհակալություն ուշադրության համար! მადლობთ ყურადღებისთვის! Σας ευχαριστώ για την προσοχή σας!

Dr. Sergiy Medinets ONU Odesa, Ukraine s.medinets@gmail.com



Dr. Artak Piloyan AUA Yerevan, Armenia apiloyan@aua.am



<u>Giorgi Mikeladze</u> GRAL Tbilisi, Georgia <u>gmikeladze@gis-lab.ge</u>



<u>Eleftherios Katsikis</u> CERTH Thessaloniki, Greece <u>lefkats@iti.gr</u>

