

ПІДГОТОВКА ДО ПРАКТИЧНОГО ЗАНЯТТЯ У SNAP

1) Скачати інсталяцію платформи SNAP з Sentinel Toolboxes з сайту (900 MB): <u>https://step.esa.int/main/download/snap-download/</u>

Вимоги до комп'ютера: 4GB пам'яті, 3D graphics card, 32 або 64-бітна Windows, Mac OS X чи Linux.

- 2) Встановити 9-у версію SNAP і три Toolboxes та GoogleEarth
- 3) Скачати космічний знімок Sentinel-2 за 22.04.2021 р. (732 MB):

https://drive.google.com/file/d/1o3DiABIzV8fQRS4dKPmPYIws1c3CT7sq/view?usp=sharing

- 4) Розархівувати космічний знімок (767 МВ).
- 5) Скачати і розархівувати шейп-файл:

https://drive.google.com/file/d/18edynJ2wbsPwupnx8vimg6X-FnIOt_PR/view?usp=sharing

6) Скачати і підготуватися до практикуму за програмою:

https://docs.google.com/document/d/10p8TOdD7f0xt12dM1kw1PYoI-zgY5aNx/edit?usp=sharing&ouid=11 3513181147961947467&rtpof=true&sd=true

Практична робота:

РОЗРАХУНОК КОНЦЕНТРАЦІЙ ХЛОРОФІЛУ ТА ІНДЕКСУ NDVI З ВИКОРИСТАННЯМ SNAP

А. Виконати наступні дії:

Знайти та скачати космічний знімок Sentinel-2A Level 1С за 22 квітня 2021 року -

S2A_MSIL1C_20210422T085551_N0300_R007_T35TQM_20210422T103559

за посиланням:

https://drive.google.com/file/d/172IHz3iQDNvTbXTS1YmeJEW_f285HVUI/view?usp=sharing

<u>1. Відкриття</u>

1.1. У середовищі SNAP знайти у меню (File' / 'Open Product'

1.2. Ідіть до: \папка, де скачаний знімок\

S2A_MSIL1C_20210422T085551_N0300_R007_T35TQM_20210422T103559.SAFE\

1.3. Виділіть 'MTD_MSIL1C.xml' та клацніть лівою кнопкою миші на кнопці SNAP - 'Open'

2. Перегляд метаданих

2.1. У вікні "Product Explorer" натисніть «+» (plus icons) та розкрийте "Metadata /

Level-1C_User_Product / General_Info["] папку та двічі клацніть на "Product_Info["]. Тут ви можете побачити базову інформацію про продукт – дату зйомки, рівень обробки

2.2. Двічі клацніть на " Metadata / Level-1C_DataStrip_ID". Тут ви можете побачити:

- о у / General_Info / Datatake_Info /: назву космічного апарату, дату та час зйомки, номер орбити;
- о y / General_Info / Processing_Info /: код центру обробки знімку;
- о y / General_Info / Downlink_Info /: код центру прийому знімку;
- о y / General_Info / Archiving_Info /: код архіву;
- о і т.п., утому числі параметри знімку, нахил Сонця, параметри геопозіціюнювання...

<u>3. Відображення мапи світу</u>

- 3.1. У середовищі SNAP виберіть у меню 'View' / 'Tool Windows' / 'World Map'
- 3.2. Виберіть лупу та зумуйте до футпринту знімку
- 3.3. Використовуйте мишу для зумування, вона дуже корисна, коли не в полі.

<u>4. Відображення частин спектру знімку</u>

4.1. У вікні "Product Explorer" виберіть папку "Bands" і подивіться деякі полоси, двічі клацаючи на них.

4.3. Синхронізуйте всі вікна, клацнувши на значок 🐖

"Navigation" на віконці <mark>відображення мапи світу</mark>.

- 4.4. Виберіть у головному меню SNAP: 'Window' / 'Tile Horizontally'
- 4.5. Закрийте всі вікна спектральних полос.

5. Відображення RGB-зображення знімку

У вікні "Product Explorer" виберіть мишею (правою кнопкою) назву знімку и у контекстному меню виберіть 'Open RGB Image Window' потім у вікні, що з'явилось, -> <mark>ОК</mark>

6. Проведення передискретизації усіх спектральних полос на максимальне розрізнення

<u>-10 м</u>

М

6.1. У вікні "Product Explorer" виберіть мишею (лівою кнопкою) назву знімку для обробки.

6.2. Виберіть у головному меню SNAP: 'Raster' / 'Geometric Operation' / 'Resampling'

6.3. У вікні, що з'явилось, вказати параметри як показано на картинках для вкладок "I/O

Parameters" i "Resampling Parameters" та натиснути 'Run'

Важливо на другій сторінці вказати полосу В2, тому що вона має просторове розрізнення – 10

Resampling	× 📓 Resampling		
File Help	File Help		
I/O Parameters Resampling Parameters	I/O Parameters Resampling Parameters		
Source Product	1/0 Parameters recomping recomposition		
Name:	Define size of resampled product		
[1] S2A_MSIL1C_20210422T085551_N0300_R007_T35TQM_20210422T103559	By reference band from source product:	B2	~
Target Product		Resulting target width:	10980
Name:		Resulting target height:	10980
S2A_MSIL1C_20210422T085551_N0300_R007_T35TQM_20210422T103559_resampled	O By target width and height:	Target width:	10,980 ‡
Save as: BEAM-DIMAP		Target height:	10,980 ‡
Directory:		Width / height ratio:	1.00000
E:\UAV data\2021.06.11\4_indices\red			60 *
✓ Open in SNAP	by pixel resolution (in m):	Dan dian barat width:	1970
		Resulting target width:	1830
Run Clos	se	Resulting target height:	1830
	Define resampling algorithm		
	Upsampling method:	Nearest	~
	Downsampling method:	First	~
	Flag downsampling method:	First	~
	Advanced Method Definition by Band		
	Resample on pyramid levels (for faster ima	iging)	
			Run Close

6.4. Закрийте вікно, що з'явилось, натиснув "Close"

7. Вирізка території АОІ

- 7.1. У вікні "Product Explorer" виберіть мишею (лівою кнопкою) назву знімку с розрізненням 10 м.
- 7.2. Виберіть у головному меню SNAP: 'Raster' / 'Subset...'

7.3. У вікні, що з'явилось, вкажіть координати: 'Spatial Subset' / 'Geo Coordinates' як вказано на картинці та натисніть 'Ok'

Важливо: У середовищі SNAP роздільником дрібної частини числа є крапка.

7.4. Повторіть пункт "5" для вирізки АОІ. Якщо все правильно, - з'явиться збільшене RGB-зображення Карагольської затоки

Specify Product Subset

1.04
1
к –
~

2 mp	13		Divel Coordinates	Geo Coordinat	ac	
2			Pixel Coordinates			
1			North latitude bour	nd:	46.382	2 -
The second	11.56		West longitude bou	und:	30.27	+
den :			South latitude bour	nd:	46.285	; ‡
	1		East longitude bou	nd:	30.34	1
			Scene step X:	[1 🗘
			Scene step Y:			1 🗘
			Subset scene width:		5	684.
			Subset scene height	t:	10	055.0
			Source scene width:		1	098
			Use Previ	ew	Fix full width	0.981
		~				

8. Розрахунок NDVI (Normalised Difference Vegetation Index) i NDWI (Normalized Difference Water Index)

NDVI використовується для моніторингу посухи, прогнозування сільськогосподарського виробництва. Індекс розраховується за такою формулою: NDVI = (NIR - RED)/(NIR + RED), де NIR – відбиток у ближньому інфрачервоному спектрі; RED – відображення у червоній області спектра. Цей індекс у діапазоні від -1,0 до 1,0 переважно показує наявність хлорофілу. Дуже малі значення (0,1 або менше) відповідають порожнім ділянкам каміння, піску або снігу. Помірні значення (від 0,2 до 0,3) представляють чагарники та луки, а великі значення (від 0,6 до 0,8) вказують на помірні та тропічні ліси. NDVI – це міра стану здоров'я рослин, заснована на тому, як рослина відбиває світло на певних частотах. Хлорофіл (індикатор здоров'я) сильно поглинає видиме світло, а клітинна структура листя сильно відбиває ближнє інфрачервоне світло. Коли рослина поглинає більше ближнього інфрачервоною хворобами, губчастий шар руйнується, і рослина поглинає більше ближнього інфрачервоного світла, а не відбиває його. Таким чином, спостереження за тим, як змінюється NIR у порівнянні з червоним світлом, дає точне уявлення про наявність хлорофілу, що корелює зі здоров'ям рослин.

NDWI використовується для визначення об'єктів відкритих водних просторів та їх виділення на супутниковому знімку на тлі ґрунту та рослинності. NDWI розраховується з використанням комбінації GREEN-NIR (видимий зелений та ближній інфрачервоний), що дозволяє виявляти незначні зміни вмісту води у водоймах. Індекс NDWI був запропонований Макфітерсом у 1996 році. Сьогодні він застосовується для виявлення та моніторингу найменших змін у вмісті водних об'єктів. Використовуючи спектр спектральних діапазонів NIR (ближній інфрачервоний) і GREEN (видимий зелений), NDWI може посилити присутність водних об'єктів на супутниковому знімку. Недоліком цього індексу є чутливість до будівельних конструкцій, що може призводити до переоцінки водних об'єктів. Формула NDWI: NDWI = (Green – NIR)/(Green + NIR), де NIR – відображення у ближньому інфрачервоному спектрі; Green – відображення у зеленій області спектра.

8.1. У вікні "Product Explorer" виберіть мишею (лівою кнопкою) назву знімку с розрізненням 10 м, вирізаного для Карагольської затоки.

8.2. Виберіть у головному меню SNAP: 'Optical'/ 'Thematic Land Processing' / 'Vegetation Radiometric Indices' / 'NDVI processor'. У вікні, що з'явилось, вказати параметри як вказано на картинці нижче та клацнути 'Run'. Якщо все правильно, - у вікні "Product Explorer" з'явиться новий рядок з назвою - S2A_20210422_ndvi_radiometric (назву задає оператор)

NDVI		×	8.3. У вікні " <mark>Product</mark>
File Help			Explorer ["] натисніть
I/O Parameters	Processing Parameters		« <mark>+</mark> » (plus icons) та розкрийте новий
Source Product	1. 		
[4] S2A_2021)422_ndvi	×	
Target Product			

рядок - S2A_20210422_ ndvi_radiometric, розкрийте папку "Band" та клацніть двічі на "ndvi", що призведе до з'явлення зображення індексу NDVI у Карагольскій затоці.

8.4. Виберіть у головному меню SNAP: "Raster' / 'Band Maths…'. У вікні, що з'явилось, вказати параметри як вказано на картинці нижче використовуючи "Edit Expression" (рисунок рядом), та клацнути 'Ok'.

Band Maths													×
Target product:													
[3] subset_0_of_S2A	MSI	L1C_20210422	T085551_	N0300_	R007	T35T(2M_20	21042	2T 10	3559	_res	ample	ed 🗸
Name:	S2A_	20210422_ndv	i_Band_Ma	aths									
Description:													
Unit:													
Spectral wavelength:	0.0												
Virtual (save exp	ressio	n only, don't st	ore data)										
Replace NaN and	infinit	v results by											NaN
	tedu	certainty han	4										
Rand mathe everage		reer carry barn	•										
(ca po ca pa) ((ca	n:	¢2.04)											
Load Sa	ve			1			E	dit Exp	pressi	ion			
								C	Ж		Cano	el	Help
Band Maths Expr	essior	n Editor											×
Product: [3] subset_0	of_S2	A_MSIL1C_202	10422T085	551_N0	300_R	007_T	STQM	20210)422T	1035	59_re	esamp	led 🗸
Data sources:				Express	ion:								
\$3.B1	^	@+(2	(\$3.B8	3 - \$3.	34)/(\$3.B8	+ \$3.8	34)				
\$3.B2		@-(2										
\$3.B3	-	@*(D										
\$3.84	-	010	- -										
\$3.86	-	676	*										
\$3.87	-	(@)											
\$3.88	~	Constants	~										
Show bands		Operators	~										
Show masks		Functions	~										
Show tie-point arid	c												
Show single flags				PILLINE LANUARY MILLIPE	俞	3	5	1				OF .	o errors.
				and t		~	U					UK, I	

8.5. У вікні "Product Explorer" натисніть «+» (plus icons) та розкрийте рядок -

subset_0_of_S2A_MSIL1C_20210422T085551_N0300_R007_T35TQM_20210422T103559_resampled, розкрийте папку "Band" та клацніть двічі на S2A_20210422_ndvi_Band_Maths (назву задає оператор), що призведе до з'явлення нового зображення індексу NDVI у Карагольскій затоці вже за інструментом Math.

8.6. Залишити у вікні відображення лише збільшене зображення Карагольської затоки та двох варіантів розрахунку індексу NDVI та закрити хрестиками останні.

8.7. Виділяючи почергово рисунки варіантів розрахунку індексу NDVI, натисніть на значок у меню «Colour Manipulation» на віконці відображення мапи світу та оберіть кольорову гамму «cc_chl.cpd» - > 'Open' - > "No". Синхронізуйте всі відкриті вікна, клацнувши на значок у

"Navigation" та порівняйте

картинки.

NDWI	×
File Help	
I/O Parameters	Processing Parameters
Source Product	t
[3] subset_0_	of_S2A_MSIL1C_20210422T085551_N03 ~
Target Product	
S2A_2021042	2_ndwi
Save as:	BEAM-DIMAP 🗸

8.8. У вікні "Product Explorer" виберіть мишею (лівою кнопкою) назву знімку с розрізненням 10 м, вирізаного для Карагольської затоки.
8.9. Виберіть у головному меню SNAP: 'Optical'/ 'Thematic Land Processing' / 'Water Radiometric Indices' / 'NDWI processor'. У вікні,

Спільні рішення.

що з'явилось, вказати параметри як вказано на картинці нижче та клацнути <mark>'Run'</mark>. Якщо все правильно, - у вікні "Product Explorer" з'явиться новий рядок - S2A_20210422_ndwi_radiometric (назву задає оператор). Відобразіть його, як у пункті 8.3.

8.10. Виберіть у головному меню SNAP: "Raster' / 'Band Maths…'. У вікні, що з'явилось, вказати параметри як вказано на картинці нижче використовуючи "Edit Expression" (рисунок нижче), та клацнути 'Ok'.

Band Maths		×	8.11. У вікні " <mark>Product Explorer</mark> " натисніть « <mark>+</mark> »						
Target product:			(plus icons) та розкрийте рядок -						
[3] subset_0_of_S2	2A_MSIL1C_20210422T085551	_N0300_R ~	subset_0_of_S2A_MSIL1C_20210422T085551_						
Name: Description:	S2A_20210422_ndwi_Band_N	Maths	N0300_R007_T35TQM_20210422T103559_ resampled, розкрийте папку "Band" та клацніть						
Unit:			двічі на <u>SZA_20210422_ndwi_Band_Maths</u> (назву задає оператор), що призведе до з'явлення						
Virtual (save ex	pression only, don't store data))	зображення індексу NDWI у Карагольскій затоці за інструментом <mark>Math</mark> .						
Replace NaN an	d infinity results by	NaN	8.12. Виконайте послідовність пунктів 8.6-8.7.						
Generate assoc	iated uncertainty band		для індексу NDWI та порівняйте картинки.						
Band maths express	ion:		У чому, по вашому, причина різниці?						
(\$3.B3 - \$3.B8) / (\$	3.B3 + \$3.B8)		(https://eos.com/find-satellite/sentinel-2/)						
Load	Save Edit Ex	pression							

Help

OK

Cancel

9. Розрахунок концентрації хлорофілу «а»

9.1. У вікні "Product Explorer" виберіть мишею (лівою кнопкою) назву знімку с розрізненням 10 м, вирізаного для Карагольської затоки.

9.2. Виберіть у головному меню SNAP: 'Thematic Water Processing' / 'C2RCC Processor' / 'S2-MSI' У вікні, що з'явилось, вказати параметри як вказано на картинці нижче та клацнути 'Run'. На вкладці "Processing Parameters" вказуються параметри розрахунку хлорофилу у воді за процесором C2RCC (<u>http://step.esa.int/docs/extra/Evolution%20of%20the%20C2RCC_LPS16.pdf</u>). Потрібно вказати солоність и температуру води. Інші параметри не мають значного впливу на результаті розрахунку. Для зменшення розмірів вихідного файлу треба також виключити усі галочки з супутніх параметрів. Якщо все правильно, - у вікні "Product Explorer" з'явиться новий рядок - S2A_20210422_C2RCC (назву задає оператор). Відобразіть його, як у пункті 8.3., після чого оберіть кольорову гамму «classes_5_colors.cpd» - > 'Open' - > "No". З'явиться наступна карта:

File Edit View Analysis Layer Vector Raster	Optical Radar Tools Window Help	
File Edit View Analysis Layer Vector Raster	Optical Radar Tools Window Help Spectrum View Spectral Unmixing Geometric Preprocessing Thematic Land Processing Thematic Water Processing (A)ATSR SST Processor ARC SST Processor FLH/MCI Processor C2RCC Processors C2RCC Processors	olci
<	S2 MCI Processor MERIS FUB/WeW Water Processor MPH/CHL Processor FU Classification OWT Classification	S2-MSI Landsat-8 MERIS MERIS4 MODIS SeaWiFS VIIRS

×

C2RCC MSI Processor

File Help

I/O Parameters	Processing Parameters		
Source Product MSI L 1C produc	s t:		
[3] subset_0_	of_S2A_MSIL1C_20210422T085551_N0300_R007_T35TQM	~	
Ozone interpola	ation start product (TOMSOMI): (optional)		
		~	
Ozone interpola	ation end product (TOMSOMI): (optional)		
		~	
Air pressure int	erpolation start product (NCEP): (optional)		
		~	***
Air pressure int	erpolation end product (NCEP): (optional)		
		~	
Target Product Name:			
S2A_2021042	2_C2RCC		
Save as:	3EAM-DIMAP v		
Путь к ва	шей папке\Practice		
Open in SN	IAP		
	Rur		Close

Х

C2RCC MSI Processor

File Help

I/O Parameters Processing Parameters

Valid-pixel expression:	38 > 0 && B8 < 0.1		Í	
Salinity:	35.0			
Temperature:	15.0			
Ozone:	330.0			
Air Pressure at Sea Level:		1000.0	hF	
Elevation:		0.0	m	
TSM factor:		1.06		
TSM exponent:		0.942		
CHL exponent:	1.	1.04		
CHL factor:		21.0		
Threshold rtosa OOS:		0.05		
Threshold AC reflectances OOS:		0.1		
Threshold for cloud flag on down transmittance @865:		0.955		
Atmospheric aux data path:				
Alternative NN Path:				
Set of neuronal nets:	C2RCC-Nets	~		
Output AC reflectances as rrs instead of rhow				
Derive water reflectance from path radiance and t	ransmittance			
Output TOA reflectances				
c			>	

10. Зберігання результатів.

10.1. Натисніть мишею (правою кнопкою) на картинку результатів розрахунку хлорофілу->Export View as Google Earth KMZ-> вказати папку та ім'я файлу. Відкрити збережений файл *.kmz y Google Earth (якщо не вийшло, знайдіть *.kmz у додатку Google-Drive: <u>https://drive.google.com/file/d/1-mWbylIjEo6pdXQ2FYJFRu8aQjVU5w9G/view?usp=sharing</u>

10.2. У вікні "Product Explorer" виберіть мишею (лівою кнопкою) стрічку з розрахунком хлорофилу -

S2A_20210422_C2RCC.

10.3. Виберіть у головному меню SNAP: "Vector' / "Import" / 'Esri Shapefile'. У вікні, що з'явилось, вказати файл - Mon_2021_07_18.shp. На карті с хлорофілом з'являться три хрестики, що розташовані у місцях відбору проб у польовому виїзді.

10.4. Натисніть мишею (правою кнопкою) на карту результатів розрахунку хлорофілу->Export Mask Pixel->, Select Mask -> Mon_2021_07_18.shp -> Write to file ->вказати папку та ім'я файлу. 10.5. Відкрити збережений файл в Excel та зберегти величину концентрації хлорофілу у трьох точках в колонці "conc. chl" для подальщого вивчення.

	BROT	опці <mark>соі</mark>	<u></u>					•						
# Exported n	nask 'Mon_2	2021_07_18' on	13-Jul-2022 19	:52:26.000052	2									
# Product na	me: S2A_20	210422_C2RCC												
# Product file	e location: D	:\IMAGES\2021	LS7-LS8-S2A-S	3A\2021-04-	22_S2A_L1C	_L2A\Practice	\S2A_20210	422_C2RCC	.dim					
Pixel-X	Pixel-	/ Longitude	Latitude	iop_apig	iop_adet	iop_agelb	iop_bpart	iop_bwit	iop_adg	iop_atot	iop_btot	conc_tsm	conc_chl	c2rcc_flags
3	328,5 101,	5 30,31197829	46,37166269	0,66693676	1,133243	0,54281247	5,2451425	9,951536	1,6760554	2,3429923	15,196678	13,756663	13,780575	-2147483648

 328,5
 101,5
 30,31197829
 46,37166269
 0,66693676
 1,33243
 0,54281247
 5,2451425
 9,951536
 1,6760554
 2,342923
 15,196678
 13,756663
 13,780575
 -2147483648

 390,5
 367,5
 30,31857705
 46,34752989
 0,64420474
 1,0337843
 0,5537069
 3,374173
 8,966589
 1,5874912
 2,231696
 12,341006
 11,307279
 13,292423
 -2147483648

 355,5
 776,5
 30,31181492
 46,31091406
 0,6386561
 0,9182329
 0,57715786
 2,252267
 8,019787
 1,4953908
 2,1340468
 10,272114
 9,512385
 13,173374
 -2147483648

Дякую Вам за Вашу завзятість, що дісталися сюди!!!

