





# Assessment on Chl-a concentrations & eutrophication dynamics

2nd SET OF TRAINING SESSIONS ON EARTH OBSERVATION & ENVIRONMENTAL MONITORING FOR YOUNG SCIENTISTS & PRACTITIONERS

> Garabet Kazanjian, PhD American University of Armenia Oct 10, 2022





ERTH ENTRE FOR ESEARCH & TECHNOLOGY













PONTOS

# **Trophic levels**

Anthropogenic impacts driving many aquatic systems to eutrophic states:

- Agriculture & husbandry
- Urbanization •
  - Habitat destruction/land change 0
  - Untreated sewage 0
  - Land erosion Ο
- Floods









# Impacts of eutrophication

- Increased BOD
- Potential anoxia
- Reduced biodiversity
- Toxic cyanobacterial blooms
- Increased undesirable emissions (CH<sub>4</sub>, H<sub>2</sub>S)
- Loss of ecosystem services



- Indicator / outcome of anthropogenic impacts and water quality deterioration.
- Reporting of chl-a concentrations required measurements of the EU WFD.

Source: Online Science Notes







### Harmful algal blooms have become common in Lake Sevan









# Chlorophyll-a as proxy

- Pigment found in plants and algae (Vital for photosynthesis)
- Generally a good correlation between chl-*a* concentrations of algal biomass
- Could be used as proxy to detect occurrence and quantity of algal blooms
- Used as an indicator to monitor water quality



Source: Wikimedia Commons







### Chl-a remote sensing

Higher reflectance in lower wavelengths (blue + green regions) at lower [chl-a]

=> Challenges in inland waters with higher chl-a + humic substances









### Satellites used in remote sensing

| Landsat 4-5 | Landsat 7 ETM+ | Landsat 8 | Sentinel 2 |  |
|-------------|----------------|-----------|------------|--|
|             |                |           |            |  |
| 2009-2011   | 2012           | 2013-2015 | 2015-2019  |  |

□ PONTOS | Eutrophication Analysis – 10.10.2022 | gkazanjian@aua.am| Slide 7 | pontos-eu.aua.am







### Wavelengths and bands of used satellites

|             |       |                       | and the strategy (Allahood ) |      | 1.0       |    | Waveband                       | Central $\lambda$ (nm) | Bandwidth (nm) | Spatial resolution (m |
|-------------|-------|-----------------------|------------------------------|------|-----------|----|--------------------------------|------------------------|----------------|-----------------------|
|             |       | IN THE                | Mar 1 1 Thanking             |      |           | 1  | Coastal aerosol                | 442.7                  | 21             | 60                    |
|             | wheel |                       |                              |      | -08       | 2  | Blue                           | 492.4                  | 66             | 10                    |
|             |       |                       |                              |      |           | 3  | Green                          | 559.8                  | 36             | 10                    |
| SPOT 5      |       |                       |                              |      | 1 -       | 4  | Red                            | 664.6                  | 31             | 10                    |
|             |       |                       |                              |      | –<br>Sao– | 5  | Vegetation red edge            | 704.1                  | 15             | 20                    |
| Landsat 8   |       |                       |                              |      | ttai 0.0  | 6  | Vegetation red edge            | 740.5                  | 15             | 20                    |
| Sentinel 2  |       |                       |                              |      | ji –      | 7  | Vegetation red edge            | 782.8                  | 20             | 20                    |
|             |       |                       |                              |      |           | 8  | Near infrared                  | 832.8                  | 106            | 10                    |
| WorldView 3 |       |                       |                              |      |           | 8A | Narrow near infrared           | 864.7                  | 21             | 20                    |
| ASTER       |       |                       |                              |      | L +       | 9  | Water vapour                   | 945.1                  | 20             | 60                    |
| HyMan       |       |                       |                              |      | 0.2       | 10 | Shortwave infrared –<br>Cirrus | 1373.5                 | 31             | 60                    |
| Пумар       |       |                       |                              |      |           | 11 | Shortwave infrared             | 1613.7                 | 91             | 20                    |
|             |       |                       |                              |      | 112       | 12 | Shortwave infrared             | 2202.4                 | 175            | 20                    |
| 1 <u> </u>  |       |                       |                              |      | 0.0       |    |                                |                        |                |                       |
| 0           | 500   | 1000<br>Wavelength (n | 1500<br>m)                   | 2000 | 2500      |    |                                |                        |                |                       |



Dependence of the point of the





Cesa opermicus

7241696.45.229628220683864.40.1553290813799910") AND ( 017-01-01T00-00:00.000Z TO 2021-12-31T23:59:59:999ZI AND 2017-01-01T0D 0D:00.000Z TO 2021-12-31T23:59:59.999Z] ) AND

Display 1 to 25 of 18 Inder By: Indestion Date

100

inter.

Lat Lon: 40.96, 45.25

DD



201

### Method used

- Images downloaded from Copernicus Open Access Hub & USGS Earth Explorer
- Images then processed in SNAP with C2RCC

#### Image nomenclature:

#### S2A\_MSIL1C\_20200729T090601\_N0209\_R050\_T35TKF\_20200729T112307

mission ID

Product Level

start time **PDGS Processing Baseline number** 

sensing

**Relative Orbit** number field

Discriminator **Tile Number** 

Product

MSULIC 20211227T075131 N0201 8135 TIRTNK 20211227T0907 24 MSIL1C 20211217T075331 N0301 8135 T38TNK 20211217T0905. on: Sentinel 2 Instrument MSI Sensine Date: 2021-12-17707-53-32-0242 St 24 Mail \$26 MSU IC 20211207075321 M0301 #135 T38TMK 202112070901 ditte-SZA MBI A MSILIC 20211127T075251 N0301 R135 T38TNK 20211127T0906... C No. Sentinel-2 Instrument: MSJ Sensing Date: 2021-11-27707:52:51.024Z SI SHID E 121-11-27707-52-12 0242 SHEW 202110287075031 N0301 K135 T38TNK 2021102870853... 0 v << < page: 1 of8 > >> Products per page: 25

B Q

https://scihub.copernicus.eu

Copernicus Open Access Hub









## Estimate chl-a concentrations via C2RCC

- Started as The CoastColour Project
- Amended by additional neural networks and eventually renamed Case 2 Regional CoastColour (C2RCC)
- Is applicable to all past and current ocean colour sensors as well as Sentinel 2
- Is available as a package in ESA's SNAP Toolbox



Figure 4: C2RCC processor family tree

Source: Brockmann et al., 2016







## Estimate chl-a concentrations via C2RCC

The model uses 5 components for scattering and absorption:

- 1. pigment absorption (apig)
- 2. detritus (adet)
- 3. gelbstoff (agelb)
- 4. white scatterer (bwhit) calcareous material
- 5. typical sediment scatterer (btsm)



Source: Brockmann et al., 2016







## Hands on work

- 1. Open ESA SNAP Tool
- 2. Open map file
- 3. Subset
- 4. Resample based on 10m resolution
- 5. Using C2RCC tool, calculate chl-a & TSM
- 6. Export maps
- 7. Statistics
- 8. Compare the 2 maps









## A peak into bloom drivers







Average water temperature in Lake Sevan in July over a decade

| 2013 | 2014   | 2015   | 2016   | 2017 | 2018   | 2019   | 2020   | 2021 | 2022   |
|------|--------|--------|--------|------|--------|--------|--------|------|--------|
| 19°C | 19.1°C | 19.2°C | 18.6°C | 19°C | 20.7°C | 19.4°C | 18.7°C | 19°C | 17.3°C |

Source: seatemperature.info







## **Challenges and limitations**

- 1. Higher inaccuracies from shallow areas due to bottom reflections
- 2. High levels of chl-a measured in southern littoral areas. Phytoplankton or filamentous algae?



□ PONTOS | Eutrophication Analysis – 10.10.2022 | gkazanjian@aua.am| Slide 15 | pontos-eu.aua.am







## Eutrophication dynamics (Lake Sevan, Armenia)

Distinct dynamics within years (algal blooms generally appearing in July)









