





# PONTOS VIRTUAL TRAINING MODULES

# December 2022

#### AUA ACOPIAN CENTER for the ENVIRONMENT



CERTH CENTRE FOR RESEARCH & TECHNOLOGY HELLAS









PONTOS-EU.AUA.AM







# Module 5

# The Application of Earth Observation: Chlorophyll-A Concentration & Eutrophication Dynamics with the Example of Assessments via PONTOS platform







Responsible Partner - American University of Armenia Supporting Partner - Environmental Protection and Mining Inspection Body of the Republic of Armenia Slides and scripts prepared by - Garabet Kazanjian, Maria Zoidou, Nikolaos Kokkos Contact Information - pontos@aua.am

This module is developed in the frames of the BSB 889 PONTOS Project







### LEARNING OBJECTIVES OF MODULE 1

Learn about the causes and impacts of eutrophication in water ecosystems

Familiarize yourself with the history of remote sensing and chlorophyll-a (challenges and solutions)

Identify the satellites used for water quality monitoring

Download freely available satellite images

Learn how to calculate chl-a concentrations from satellite images using ESA's SNAP toolkit

Use the PONTOS Data Cube to calculate Total Suspended Matter (TSM) concentrations







### **MODULE STRUCTURE**

| 01 | Eutrophication in water ecosystems (causes and impacts)              |  |
|----|----------------------------------------------------------------------|--|
| 02 | Using remote sensing to monitor<br>eutrophication dynamics           |  |
| 03 | Calculating chl- <i>a</i> using the SNAP toolkit and C2RCC processor |  |
| 04 | Using the PONTOS Data Cube to calculate<br>Total Suspended Matter    |  |







01 Eutrophication in water ecosystems (causes and impacts)

This section will introduce you to the classification of water ecosystems and their trophic states, issues related to water quality monitoring, eutrophication and its drivers, as well as, the importance of ensuring the good status of water bodies.

#### Image source: ConserveEnergyFuture



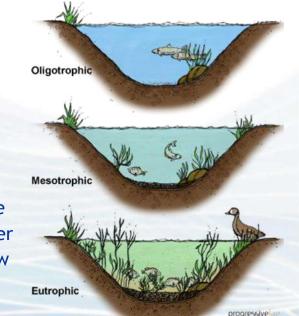






Eutrophication in water ecosystems

# Aquatic ecosystems are classified into 3 main trophic states (*i.e.* nutrient content):


1. Oligotrophic systems:

Characterized by very low nutrient content (likely nitrogen (N) and/or phosphorus (P) being a limiting factor, thus very low productivity. Very high water transparency.

2. Mesotrophic systems:

Higher nutrient content leads to higher primary productivity (more plants and algae), likely higher secondary productivity, lower water transparency due to higher dissolved organic matter and algal grow

Eutrophic systems:
 Very high nutrient content, excessive algal blooms, turbid waters.









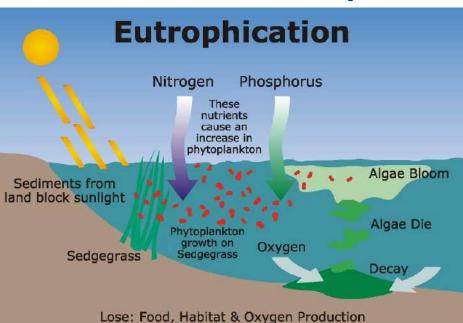

# Eutrophication in water ecosystems

Image source: tnluser

Eutrophication is the process of excessive algal growth due to increased nutrient (particularly N & P loading).

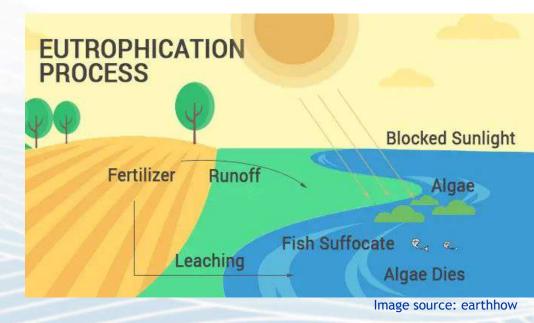
### Eutrophication can lead to:

- Increased BOD (Biological O<sub>2</sub> Demand)
- Potential anoxia
- Reduced biodiversity
- Toxic cyanobacterial blooms
- Increased undesirable emissions (CH<sub>4</sub>, H<sub>2</sub>S)
- Release of bad odours
- Loss of ecosystem services










Eutrophication in water ecosystems

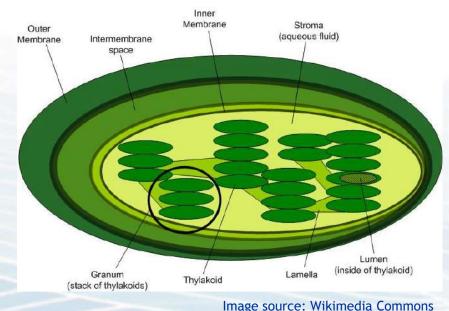
### Causes of eutrophication may include:

- Agriculture & husbandry
- Urbanization
  - Habitat destruction/land change
  - Untreated sewage
  - Land erosion
- Floods

=> Indicator / outcome of anthropogenic impacts and water quality deterioration.










# Eutrophication in water ecosystems

To assess eutrophication and algal biomass in water ecosystems, researchers often use the concentrations of chlorophyll-a (chl-a) as a proxy measurement. Chl-a is:

- A pigment found in plants & algae. It is vital for photosynthesis and is what gives plants their green color.
- Positively correlated with algal biomass.
- Often used as an indicator to monitor water quality. For instance, reporting of chl-*a* concentrations is required as part of the EU Water Framework Directive (WFD).





02





#### Common borders. Common solutions.

Using remote sensing to monitor eutrophication dynamics

To compliment the *in-situ* measurements of chl-*a* and algal biomass / productivity

To measure other water quality parameters: Turbidity, Total suspended matter (TSM), Dissolved Organic Matter (DOM), etc.

#### But there are challenges:

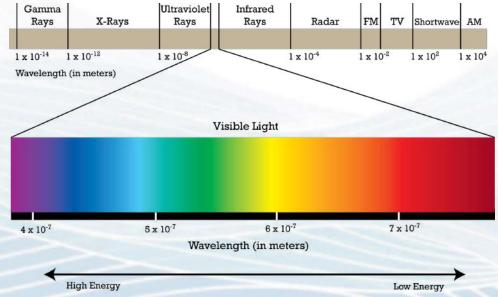
- Isolating the chl-*a* signal from other optically active compounds
- The diel (vertical) movements of plankton in the water column
- Atmospheric correction



Image source: NASA/Science Photo Library








# Using remote sensing to monitor eutrophication dynamics

To assess eutrophication dynamics via remote sensing, it is convenient to measure chl-*a* concentrations due to its optical properties.

Chl-a has higher reflectance in lower wavelengths (blue + green regions) at lower concentrations.

=> It works very well in marine ecosystems but has historically posed challenges in inland waters with higher [chl-a]+ humic substances









Using remote sensing to monitor eutrophication dynamics

#### Historical overview:

Earliest chl-*a* estimation via remote sensing started in the late 1970s in marine waters [Nimbus 7, Coastal Zone Color Scanner (CZCS), based on 2 bands]

SeaWIFS, MODIS, MERIS, Landsat 7,8,9, Sentinel 2, 3 (OLCI) have all since been launched that can estimate chl-a.

Satellites with multispectral images  $\Rightarrow$  possibility of more complex algorithms to estimate chl-a in inland waters

Making use of neural networks to better isolate and identify specific optical characteristics



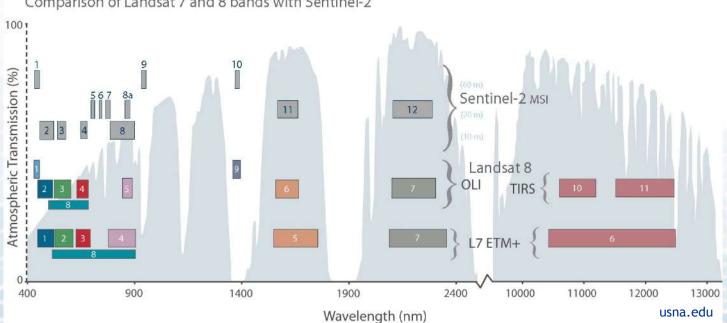
Image source: ESA







# Satellites used in water quality remote sensing










# Wavelengths & bands of satellites used in water quality remote sensing



Comparison of Landsat 7 and 8 bands with Sentinel-2





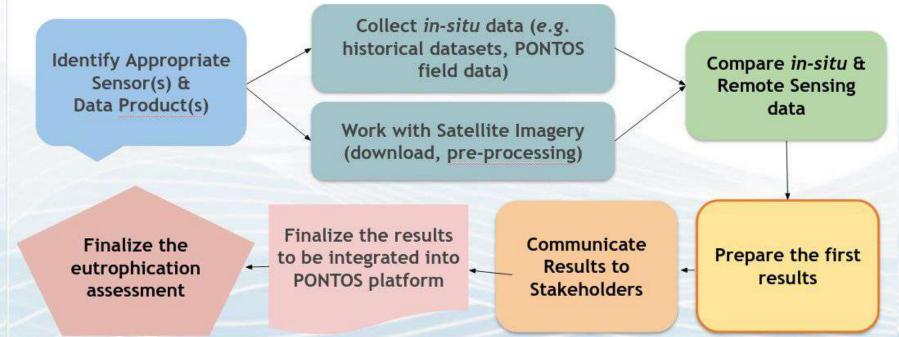


## Wavelengths & bands of satellites used in water quality remote sensing

### Sentinel-2 properties:

- Time period: 2015 2021
- Sentinel 2A and 2B: polar orbit, phased at 180° to each other
- Equipped with multispectral instrument (MSI) with 13 spectral bands
- Wide swath width (290 km)
- Revisit: 5 days at equator (2 satellites)
- Level 1C and 2A (atmospherically corrected)

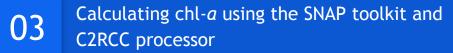
|    | Waveband                       | Central $\lambda$ (nm) | Bandwidth (nm) | Spatial resolution (m) |
|----|--------------------------------|------------------------|----------------|------------------------|
| 1  | Coastal aerosol                | 442.7                  | 21             | 60                     |
| 2  | Blue                           | 492.4                  | 66             | 10                     |
| 3  | Green                          | 559.8                  | 36             | 10                     |
| 4  | Red                            | 664.6                  | 31             | 10                     |
| 5  | Vegetation red edge            | 704.1                  | 15             | 20                     |
| 6  | Vegetation red edge            | 740.5                  | 15             | 20                     |
| 7  | Vegetation red edge            | 782.8                  | 20             | 20                     |
| 8  | Near infrared                  | 832.8                  | 106            | 10                     |
| 8A | Narrow near infrared           | 864.7                  | 21             | 20                     |
| 9  | Water vapour                   | 945.1                  | 20             | 60                     |
| 10 | Shortwave infrared -<br>Cirrus | 1373.5                 | 31             | 60                     |
| 11 | Shortwave infrared             | 1613.7                 | 91             | 20                     |
| 12 | Shortwave infrared             | 2202.4                 | 175            | 20                     |


Sentinel 2 bands and their characteristics (sentinel.esa.int)








# Using remote sensing to monitor eutrophication dynamics











# Estimating chl-*a* concentrations using the C2RCC processor:

- It started as 'The CoastColour' Project
- It was amended by additional neural networks and eventually renamed as Case 2 Regional CoastColour (C2RCC)
- It is applicable to all past and current ocean colour sensors as well as Sentinel-2
- It is available as a package in ESA's SNAP Toolbox

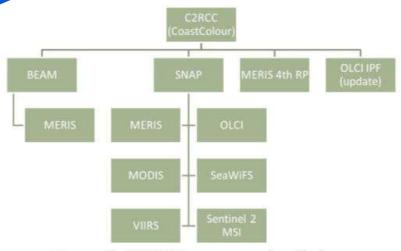



Figure 4: C2RCC processor family tree

Image source: Brockmann et al., 2016







# Calculating chl-a using the SNAP toolkit and C2RCC processor

Estimating chl-*a* concentrations using the C2RCC processor

The model uses 5 components for scattering and absorption:

- 1. pigment absorption (apig)
- 2. detritus (adet)
- 3. gelbstoff (agelb)
- 4. white scatterer (bwhit) calcareous material
- 5. typical sediment scatterer (btsm)

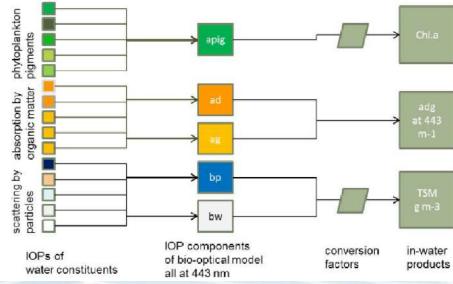



Image source: Brockmann et al., 2016







# Calculating chl-a using the SNAP toolkit and C2RCC processor

# Downloading freely available satellite images:

1. For Landsat images, use the USGS Earth Explorer website [earthexplorer.usgs. gov]









Nem Backet (1) 2 Hop Feedback Logout Inikulauwokkos

Clear Search Criter

#### Common borders. Common solutions.

# Calculating chl-a using the SNAP toolkit and C2RCC processor

#### **Downloading freely** 505 available satellite images: thExplorer Search Criteria Summary draw You can then add the A Sparch Docult Image Footprint selected product to cart, Downlo view its metadata, or download it directly. Add to C Metadata Anno desce Restand a Carboni Observing Des








# Calculating chl-a using the SNAP toolkit and C2RCC processor

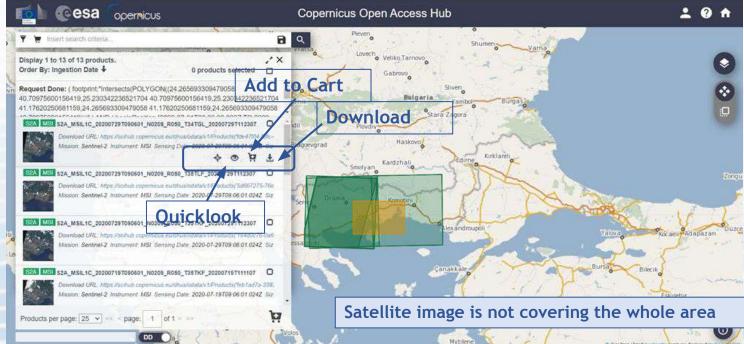
Downloading freely available satellite images:

2. For Sentinel images, use the Copernicus Open Access Hub [scihub.copernicus.eu/dh us/]










Coart Street / Date & Cor

#### Common borders. Common solutions.

# Calculating chl-a using the SNAP toolkit and C2RCC processor

Choose image(s) and add to cart or download directly.









# Calculating chl-a using the SNAP toolkit and C2RCC processor

#### Sentinelsat:

makes searching, downloading and retrieving the metadata of Sentinel satellite images from the Copernicus Open Access Hub easy.

[sentinelsat.readthedocs.i o/en/stable/]

```
from sentinelsat import SentinelAPI, read_geojson, geojson_to_wkt
from datetime import date
api = SentinelAPI('user', 'password', 'https://scihub.copernicus.eu/dhus')
# search by polygon (WKT format), time, and SciHub query keywords
```

```
footprint = geojson_to_wkt(read_geojson('/path/to/map.geojson'))
```







# Calculating chl-a using the SNAP toolkit and C2RCC processor

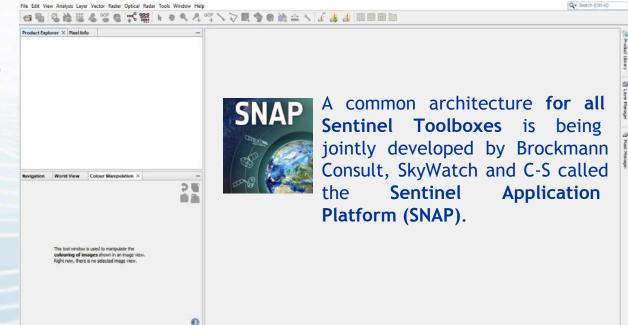
#### Sentinel nomenclature:

Identifies a Level-1C product acquired by Sentinel-2A on the 29th of July, 2020 at 9:06:01 AM. It was acquired over Tile 35TKF during Relative Orbit 050, and processed with PDGS Processing Baseline 02.09.

# S2A\_MSIL1C\_20200729T090601\_N0209\_R050\_T35TKF\_20200729T112307 mission ID sensing start time Relative Orbit Product Product Level PDGS Processing Tile Number Baseline number field

All the bands included in the file are in JPEG2000 format.

In addition, a "True Colour Image" in JPEG2000 format is included within the Tile folder of Level-1C products in this format and a manifest xml file that tells the computer what is inside the file.

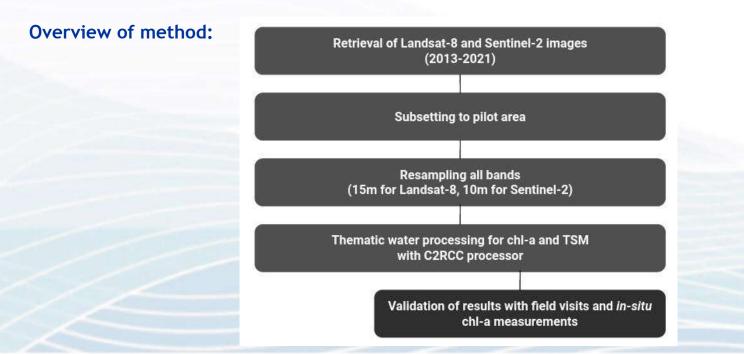







# Calculating chl-a using the SNAP toolkit and C2RCC processor

To process the downloaded images, we will use the European Space Agency's (ESA) Sentinel Application Platform (SNAP) [https://step.esa.int/main/dow nload/snap-download/]

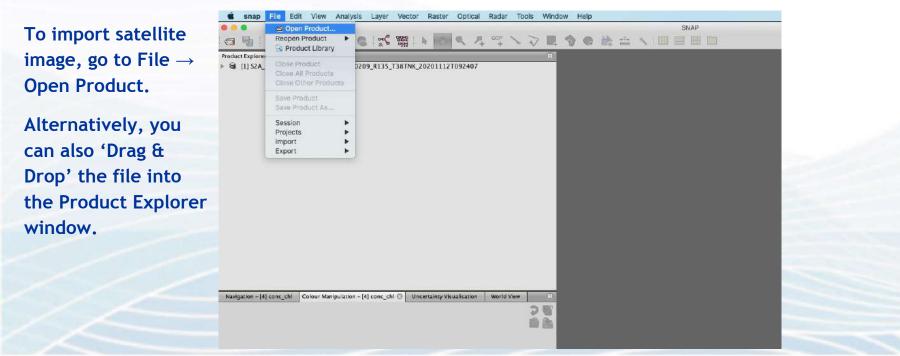









# Calculating chl-a using the SNAP toolkit and C2RCC processor










# Calculating chl-a using the SNAP toolkit and C2RCC processor





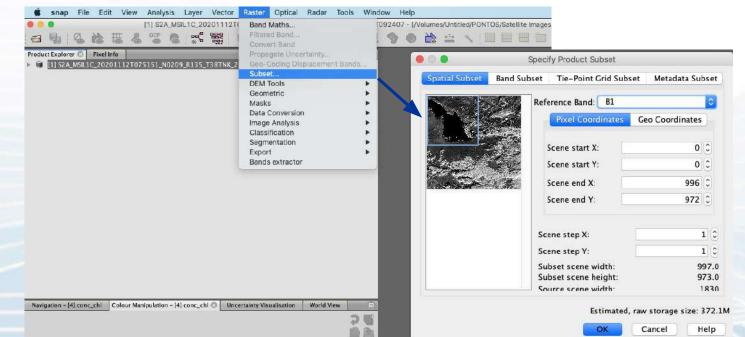




# Calculating chl-a using the SNAP toolkit and C2RCC processor

To visualize the imported image, right click on the product and press on 'Open RGB Image Window'.

| Band Maths<br>Add Elevation Band<br>Add Land Cover Band     | Select RGB-Image Channels           |
|-------------------------------------------------------------|-------------------------------------|
| ✓ Group Nodes by Type                                       | Profile:                            |
| Open RGB Image Window<br>Open HSV Image Window              | Sentinel 2 MSI Natural Colors 😒 📹 🛄 |
| Close Product<br>Close All Products<br>Close Other Products | Red: B4                             |
| Save Product<br>Save Product As                             | Green: B3                           |
| Cut ೫%X<br>Copy ೫C<br>Paste ೫℃<br>Delete ID                 | Blue: B2 \$                         |
| Properties                                                  |                                     |








# Calculating chl-a using the SNAP toolkit and C2RCC processor

To select an area of interest, go to the 'Raster' tab and select subset. There you can use the visual tool, to choose your focus area.









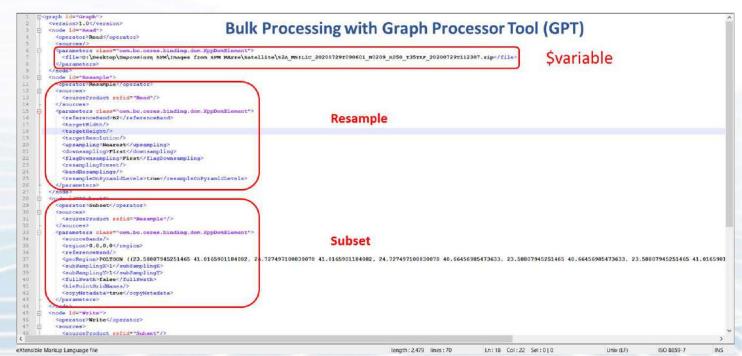
# Calculating chl-a using the SNAP toolkit and C2RCC processor

snap File Edit View Analysis Layer Vector Raster Optical Radar Tools Window Help 0.0 [1] S2A\_MSIL1C\_20201112TE Band Maths... 1092407 - [/Volumes/Untitled/PONTOS/Satellite Images ◎ 論 描 & ♡? ● 🛒 器 Product Explorer 📀 Pixel Info Resampling S 111 52A MSILIC 20201112T075151 N0209 R135 T38TNK 2 File Help Subset... I/O Parameters Resampling Parameters **DEM Tools** . Geometric Level-3 Binning Define size of resampled product Masks . Mosaicking By reference band from source product: B2 Data Conversion Reprojection Resulting target width: 10980 Image Analysis Resampling . Classification GeFolki Co-registrat Resulting target height: 10980 Segmentation Multi-size Mosaic By target width and height: Target width: 10,980 Collocation Export Target height: 10.980 Bands extractor Width / height ratio: 1.00000 By pixel resolution (in m): 60 Resulting target width: 1830 Resulting target height: 1830 Define resampling algorithm Nearest Upsampling method: Downs ampling method First Flag downsampling method: First Advanced Method Definition by Band Navigation - [4] conc\_chl Colour Manipulation - [4] conc\_chl 🔘 Uncertainty Visualisation World View Resample on pyramid levels (for faster imaging)

To make all image bands of equivalent resolution, we'll need to resample the product file.

To do so, go to the 'Raster' tab, click on 'Geometric' and then on 'Resampling'.

We will use B2 as the reference band to resample all bands to 10m resolution.







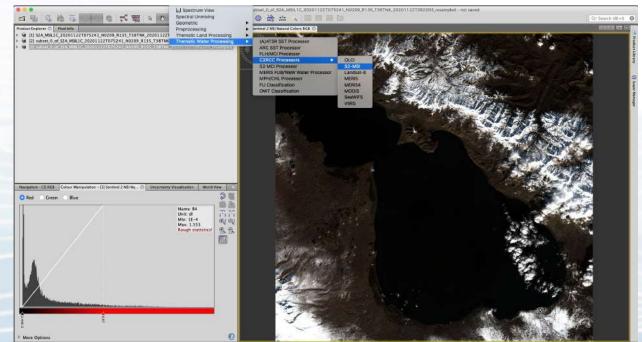

# Calculating chl-a using the SNAP toolkit and C2RCC processor

Alternatively, you can perform bulk processing using the Graph Processor Tool (GPT).










# Calculating chl-a using the SNAP toolkit and C2RCC processor

Now to calculate chl-a and TSM concentrations, we will use the C2RCC processor.

To do so, go to the 'Optical' tab, then select 'Thematic Water Processing' and choose 'C2RCC Processors'.

Select the processor equivalent to your product (e.g. S2-MSI for Sentinel-2 images).









# Calculating chl-a using the SNAP toolkit and C2RCC processor

There, change the values of the following parameters to match the *in-situ* conditions at the time the image was taken:

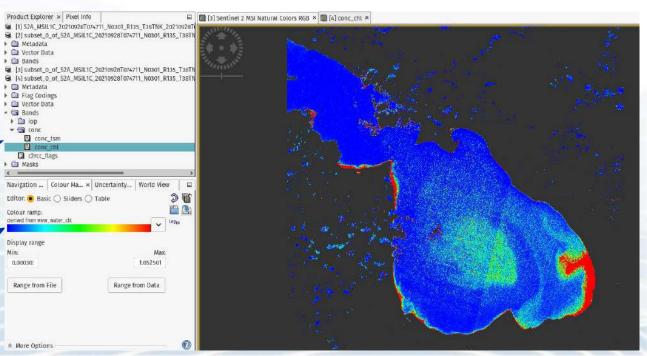
- Salinity
- Temperature
- Ozone
- Pressure
- Elevation

+ untick all below boxes

| I/O Parameters Process                           | sing Parameters      |
|--------------------------------------------------|----------------------|
| Valid-pixel expression:                          | > 0 && B8 < 0.1      |
| Salinity:                                        | 5                    |
| Temperature:                                     | 21                   |
| Ozone:                                           | 33(                  |
| Air Pressure at Sea Level:                       | 1001                 |
| Elevation:                                       | 1900                 |
| TSM factor:                                      | 1.                   |
| TSM exponent:                                    | 0.5                  |
| CHL exponent:                                    | 1.                   |
| CHL factor:                                      | 21                   |
| Threshold rtosa OOS:                             | 0.                   |
| Threshold AC reflectances OOS:                   |                      |
| Threshold for cloud flag on down transmittance 🤅 | 0.5                  |
| Atmospheric aux data path:                       |                      |
| Alternative NN Path:                             |                      |
| Set of neuronal nets:                            | C2RCC-Nets           |
| Output AC reflectances as rrs instead of rhow    | v                    |
| Derive water reflectance from path radiance a    | ind transmittance    |
| Output TOA reflectances                          |                      |
| Output gas corrected TOSA reflectances           |                      |
| Output gas corrected TOSA reflectances of au     | uto nn               |
| Output path radiance reflectances                |                      |
| Output downward transmittance                    |                      |
| Output upward transmittance                      |                      |
| Output atmospherically corrected angular dep     | pendent reflectances |
| Output normalized water leaving reflectances     | 6);                  |
|                                                  |                      |





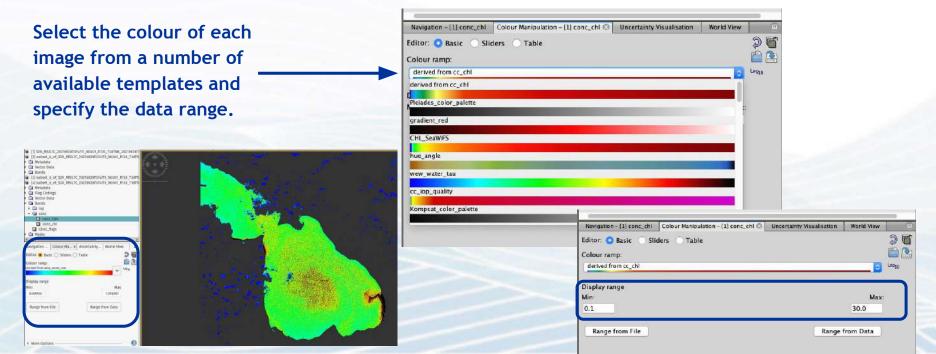



# Calculating chl-a using the SNAP toolkit and C2RCC processor

Double click on the latest created product to expand, then click on 'Bands'  $\rightarrow$  'conc'. There you will have 2 newly created images:

- chl-a concentration
- TSM

You can select the colour of each image from a number of available templates and specify the data range.



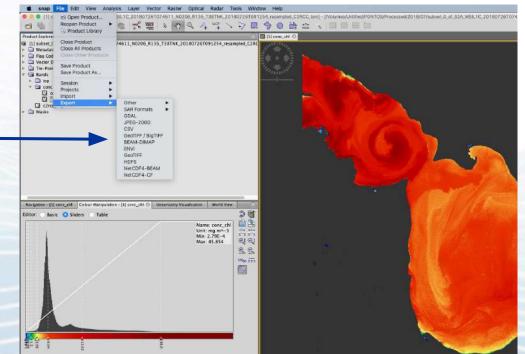







# Calculating chl-a using the SNAP toolkit and C2RCC processor










## Calculating chl-a using the SNAP toolkit and C2RCC processor

You can export the created images by clicking on 'File' → 'Export' and selecting on any of the desired file formats, including GeoTIFF, JPEG-2000, NetCFD4, ENVI, HDF5, etc.











Using the PONTOS Data Cube to calculate Total Suspended Matter

The last part of this module will describe how to use the PONTOS Data Cube to calculate the Total Suspended Matter (TSM) in water bodies.

TSM is an indication of water turbidity (*i.e.* low water clarity), thus high TSM concentrations could often indicate low water quality, water pollution, and anthropogenic pressure.

## PONTOS Data Cube



#### ome 🛛 Data Cube Manager + 🛛 Tools + 🖉 Task Manager + Submit Feedback 📃 Logged in

# Welcome to PONTOS Data Cube

PONTOS Data Cube enables end-users with the ability of easy exploration, management, analysis and visualisation of medium resolution (10 - 30m/pixel) data from satelitie missions for each PONTOS pilot area.

#### it offers:

- Ease of use and access to satellite-based data
- · Multiple dataset interoperability and spatial consistency
- Use of Analysis Ready Data (ARD) Products
- A Shift in Paradigm from Scenes to Pixels

#### PONTOS Data Cube contains:

Landsat 5, 7 & 8 ARD in a spatial resolution of 30m from 1984 to present.
 Sentinel-2 ARD in a spatial resolution of 10m from 2015 to present

#### Instructions

- · All web browsers are supported. The system has been tested with Google Chrome, Mozilla Firefox and Opera.
- In order to use the applications, you should sign in or register, in case you don't have an account.
- . The available applications are divided into three main categories: Land, Water and General
- + From Menu > Tools > Choose Category > Application, you may select the application you wish e.g., Water Detection.
- From Menu > Task Manager > Choose Category > Application, you may view / download the output of your most recent application's execution.
- · From Menu > Data Cube Manager, you may find more information about the available datasets.

#### PONTOS project has received funding from the ENI CBC Joint Operational Programme Black Sea Basin 2014 - 2020 under Grand Agreement BSB 889







# Using the PONTOS Data Cube

#### PONTOS CROSS SORDER roject funded EUROPEAN UNION PONTOS Copernicus assisted environmental monitoring across the Black Sea Basin PONTOS Platform Publications Outreach Newsroom PONTOS Hackathon Contact us Q. Home About **PONTOS Platform** Click to Access Data Cube Click to Access WebGIS Click to access Web App Now, click to Access orms to PONTOS Data

# To access the PONTOS Data Cube:

- Go to the PONTOS 1. project website (pontos-eu.aua.am)
- Click on the tab entitled 2. "PONTOS Platform"
- 3. Data Cube



1.

2.





#### Common borders. Common solutions.



- · All web browsers are supported. The system has been tested with Google Chrome, Mozilla Firefox and Opera.
- . In order to use the applications, you should sign in or register, in case you don't have an account.
- The available applications are divided into three main categories: Land, Water and General.
- . From Menu > Tools > Choose Category > Application, you may select the application you wish e.g., Water Detection.
- . From Menu > Task Manager > Choose Category > Application, you may view / download the output of your most recent application's execution.
- From Menu > Data Cube Manager, you may find more information about the available datasets.

PONTOS project has received funding from the ENI CBC Joint Operational Programme Black Sea Basin 2014 - 2020 under Grand Agreement BSB 889







# Using the PONTOS Data Cube

Choose the pilot site (location) you are interested in to perform your query.







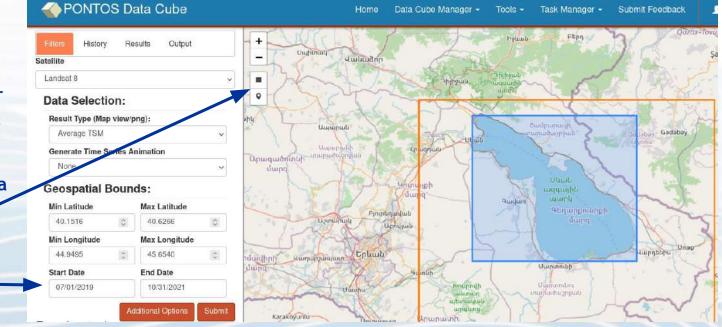


# Using the PONTOS Data Cube

#### PONTOS Data Cube Here you can select: 4 Data Cube Manager -Task Manager -Submit Feedback Logged in Tools -Home Oozax=Tovuz Papa + History Results Output 1. Images from 🔍 Umphining Samkin \_ Lubudan Satellite specific satellites Landsat 8 v . 0 Data Selection: **TSM results** 2. Result Type (Map view/png): Suspupulit Ununut shown as Average TSM v Gadabay Gadabay Daşkəsən Generate Time Series Animation Average **a**. Առագածուոնի None ũ. งันเกล b. Minimum Uluub Geospatial Bounds: ugguyhu պարկ Maximum С. Min Latitude Max Latitude Գեղարքունիքի Piniptinudut 40.1455 \$ 40,6431 \$ d. Variability Min Longitude Max Longitude Վաղարշապատ Շրևան Junghanu 44,9143 45,6590 0 3. **Option to** Ummmigh: Start Date End Date Furning generate a time 07/03/1999 01/31/2021 Ynupnuh ແຜ່ນາແມກ upunnutura series animation Additional Options Karakoyunlu








Submit Feedback

#### Common borders. Common solutions.

# Using the PONTOS Data Cube

## Here you can select (cont'd):



Data Cube Manager -

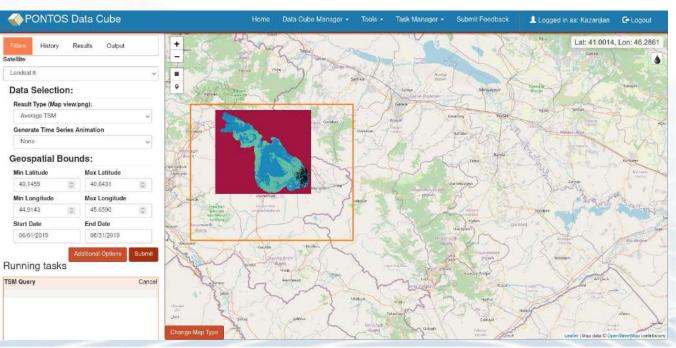
Tools -

Task Manager -

1. The spatial boundaries either

- via entering a. the exact coordinates
- b. By drawing a polygon
- The period of 2. interest for your analysis








# Using the PONTOS Data Cube

When you click submit, you will notice a TSM Query appear under running tasks.

Wait till the query is completed and a colored picture will appear within the selected boundaries, showing the TSM concentrations as specified in your query.









# Using the PONTOS Data Cube

To review any of your previous queries, you can click on 'Task Manager'  $\rightarrow$  Water  $\rightarrow$  Water Quality TSM.

There you will see a list of all your requested queries.

Click on Details for more information.

| PONTOS Da                   | ata Cube     |               |                  | Home I         | Data Cube Manager + | Tools -    | Task          | Manager + | Submit Feedba   | ck 🔔       | Logged in as: Kazanjian | C+ Logout |
|-----------------------------|--------------|---------------|------------------|----------------|---------------------|------------|---------------|-----------|-----------------|------------|-------------------------|-----------|
| Shaw 15 - entries           |              |               |                  |                |                     |            | Land<br>Water |           | Water Detectio  | n          | Search:                 |           |
| Satellite 🕼 Area Id 🔢       | Time Start   | Time End      | Latitude Max 💠   | Latitude Min   | Longitude Max       | Longitud   | Gener         | al +      | Water Quality 1 |            | Animated Product        | More Info |
| LANDSAT_8 Sevan_Lake        | July 1, 2019 | July 1, 2020  | 40.5336218414586 | 40.53362084145 | 86 45.0788807818663 | 45.0788797 | 7818663       | TSM Query | Coastal Chang   | e TS       | M None                  | Details   |
| LANDSAT_8 Sevan_Lake        | June 1, 2019 | Aug. 31, 2019 | 40.6430863023654 | 40.14558158997 | 12 45.6588838121224 | 44.914341  | 170133        | TSM Query | None            | Average TS | M None                  | Details   |
| Showing 1 to 2 of 2 entries |              |               |                  |                |                     |            |               |           |                 |            | P -00                   | us 1 Next |







# Using the PONTOS Data Cube

Here you will see the details of your query and be able to download the produced images in GeoTIFF or NetCDF format.

| Fask Details                                                                                                                   | Task Metadata                                                                                                                                              |                             |               | (#                                                        |
|--------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|---------------|-----------------------------------------------------------|
| Title TSM Quary<br>Description None<br>Status Complete<br>Start Time 12/26/2022 18:27<br>End Time 12/26/2022 18:27             | Platform LANDSAT_8<br>Scene Count 10<br>Pixel Count 3902175                                                                                                |                             | 200           |                                                           |
| Task Parameters                                                                                                                | Task Outputs                                                                                                                                               |                             |               |                                                           |
| (Lat, Len) Min (40.145582, 44.914341)<br>(Lat, Lon) Max (40.643088, 45.658884)<br>Task Type Average TSM<br>Animation Type None | Average TSM Path View image<br>Clear Observation Path View image<br>Water Percentage Path View image<br>NetODF Path Download to<br>GeoTIF Path Download to |                             | <u>ک</u><br>د |                                                           |
| Scene Metadata                                                                                                                 | Govern Lawrence and                                                                                                                                        |                             |               |                                                           |
| 08/26/2019<br>Clean pixels<br>Total Pixels<br>Clean Pixel Perc                                                                 |                                                                                                                                                            | 203892<br>3902175<br>5.23%  |               | Water Percentage Image                                    |
| 08/19/2019<br>Clean pixels<br>Total Pixels<br>Clean Pixel Perc                                                                 |                                                                                                                                                            | 649937<br>3902175<br>16.66% | Water Perce   | entage image to the lask with the & costable - 2015-46 ac |
| 08/10/2019<br>Clean pixels<br>Total Pixels                                                                                     |                                                                                                                                                            | 71492                       | 18 📉 🗎        |                                                           |







Joint Operational Programme Black Sea Basin 2014-2020 Copernicus Assisted Environmental Monitoring across the Black Sea Basin - PONTOS December 2022

Joint Operational Programme Black Sea Basin 2014-2020 is co-financed by the European Union through the European Neighbourhood Instrument and by the participating countries: Armenia, Bulgaria, Georgia, Greece, Republic of Moldova, Romania, Turkey, and Ukraine.

This publication has been produced with the financial assistance of the European Union. The contents of this publication are the sole responsibility of Copernicus assisted environmental monitoring across the Black Sea Basin - PONTOS and can in no way be taken to reflect the views of the European Union.





CERTH CENTRE FOR RESEARCH & TECHNOLOGY HELLAS







