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1 Introduction 
Coastal lagoons are considered unique, complex ecosystems with significant 

environmental and socioeconomic value (Jimeno-Sáez et al., 2020; Sylaios and Theocharis, 
2002). They form shallow coastal water bodies, mostly situated in river deltaic zones, being 
isolated from the sea by a sand barrier, land spit or other similar geomorphic feature, 
originating from the sediment outflux of the adjacent river. Lagoons are connected to the sea 
by one or more tidal inlets, through which the lagoon basin communicates with the open sea 
(Kjerfve, 1994). The geometric characteristics of these inlets (length, width, depth) govern the 
exchange dynamics and fluxes of water, salt, nutrient and SPM between the lagoon’s basin 
and the open sea, classifying them into flood- or ebb-dominated systems. In flood-dominated 
systems, flood prevails over ebb within a typical tidal cycle, meaning that influx is stronger 
than outflux. These are relatively deep entrance inlets with high inlet cross-sectional (AC) to 
lagoon basin (Ab) areas ratio. On the contrary, in ebb-dominated lagoons, ebb prevails over 
flood, meaning that outflux is stronger than influx. The distortion of the tidal signal through 
the inlet necessarily impacts the water flow between the ocean and the lagoon, and a strong 
asymmetry of the current velocity occurs, known as residual circulation capable to carry 
pollutants and sediments.  

Lagoons are considered of high ecological value, as recognized by European legislation 
through the application of the Habitats Directive and the Natura 2000 network, providing a 
series of ecosystem services, including fish production, biodiversity conservation, nutrient 
cycling, pollutants removal such as heavy metals (Costanza et al., 1997; Zanchettin et al., 
2007). They act as transitional buffer zones for the transfer of freshwater and substances from 
the terrestrial to the coastal zones. A portion of the chemical compounds entering the lagoon 
environment from the land or the sea is deposited into the lagoonal sediments, making the 
systems extremely delicate to retain their ecological balance. Environmental degradation 
caused by alterations in watershed hydrology, pollution and human activities affects the 
capacity of the lagoon to deliver the above ecosystem services (Kjerfve, 1994). 

The great variety of anthropogenic pressures alters the balance of the coastal lagoon 
ecosystem, making crucial the need for consistent monitoring and management of these 
territories. One of the major threats these systems face is eutrophication, defined as the 
accelerated primary production and the occurrence of increased biomass of primary 
producers, such as phytoplankton, due to nutrient over-enrichment (Devlin et al., 2011). 
Eutrophication problems associated with human activities have been identified as one of the 
main causes of water quality deterioration of coastal ecosystems (Kadiri et al., 2021). Several 
negative impacts are associated with eutrophication: the accelerated phytoplankton 
production limits sunlight availability to benthic aquatic plants; depletes dissolved oxygen in 
the water column, and especially at the bottom, due to decomposition of accumulated 
biomass resulting in hypoxic or anoxic conditions; and decreases species diversity and 
abundance.  

This could give rise to shifts in invertebrate communities and permanent changes in 
aquatic habitats, with negative implications for pelagic and benthic fauna, including fish 
stocks. For example, a high fish mortality rate was reported in Ismarida lake in August 2013 
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(Koutrakis et al., 2016) and in Vistonida lagoon in July 2014. Eutrophication could also lead to 
algal toxin production, with a wider range of toxic species reported in estuarine 
environments, compared to freshwater environments, which could significantly affect the 
edibility of local seafood (Shumway, 1990). Such adverse effects may trigger negative socio-
economic consequences, becoming significant over time. 

The phytoplankton biomass, represented by chlorophyll-a (Chl-a), is an important 
indicator to evaluate the state of eutrophication in water bodies, thus helpful in coastal 
ecosystem monitoring and management. Systematic monitoring in coastal ecosystems is 
essential, but in-situ monitoring (e.g., water sample collection and analysis in the laboratory) 
is a time and money consuming method and is laborious to adequately assess the entire 
system on a regular basis. Satellite remote sensing is a feasible way to monitor water bodies 
when water quality over large regions has to be monitored with regular frequency. There is 
also the possibility to estimate water quality in non-accessible water bodies. However, passive 
satellite monitoring is heavily dependent upon weather, air mass temperature changes and 
sunlight conditions, which directly affect the quality and quantity of useful data. 

The objective of this study is to map and assess Chl-a concentration in the coastal lagoons 
of Northern Greece. Those coastal lagoons have cultural, environmental and economic 
importance, therefor monitoring is needed to address the water quality changes. We focus 
on the study of the temporal and spatial evolution of Chl-a for the period 2013-2021. Landsat 
8 satellite images were retrieved and processed for the time period 2013-2015 and Sentinel-
2 images for the period 2015-2021.  

Chl-a values were initially assessed using the well-known C2RCC algorithm. This algorithm 
has been validated in the open sea environment of Case 1 (in which their inherent optical 
properties are dominated by phytoplankton, e.g., most open ocean waters) and Case 2 waters 
(containing colored dissolved organic matter (CDOM) and inorganic mineral particles in 
addition to phytoplankton. However, the interference of (a) the shallow sea bottom 
reflection, (b) the sun glint and (c) the presence of non-algal particles on the optical signal 
(spectral reflectances) measured by satellites has not been adequately evaluated. In this 
report, we attempted to recalibrate the C2RCC processor using in-situ Chl-a concentration 
data and the respective spectral reflectance values for the appropriate training of a Takagi-
Sugeno neuro-fuzzy algorithm to correct the satellite-derived Chl-a values. 

Figure 1 explains graphically the steps to be followed for this analysis. 
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Figure 1. Methodological steps followed in present study. 

1.1 Satellite Remote Sensing and Chlorophyll-a Algorithms 

The Water Framework Directive (WFD, 2000/60/EC) obligates all European Union (EU) 
member states to implement water management and estimate the ecological status of water 
bodies, through systematic monitoring and classification. The measurement of Chl-a in water 
is commonly used (a) as an indicator to monitor water quality in coastal and inland waters, 
(b) in the surveillance of harmful algal blooms (HABs), (c) and in ecological studies of 
phytoplankton biomass and productivity (Jordan et al., 1991; Morrow et al., 2000). Deriving 
the chlorophyll concentration associated with algal blooms is an important metric which 
provides quantitative algal biomass measures useful in documenting the severity of blooms 
and their long-term trends, especially in relation to nutrient targets and water quality 
guidelines. Moreover, Chl-a has also been used as an indicator of cyanobacteria (Ogashawara 
and Moreno-Madriñán, 2014). Other water quality indicators like total suspended matter 
(TSM), turbidity, Secchi depth and colored dissolved organic matter (CDOM) can also be 
measured using remote sensing techniques (Toming et al., 2016).  

Remote sensing has been used for decades to estimate Chl-a concentration, most notably 
with operational applications in the oceans (Hu et al., 2012; Mobley, 1995; O'Reilly et al., 
1998; Schalles, 2006). However, significant progress has been made in applying remote 
sensing in inland water bodies with positive outcomes, as described in Palmer et al. (2015) 
and Bukata (2013). The main challenge to use remote sensing is to isolate the Chl-a signal 
from other cell components and other optically active compounds and the effects of the 
vertical distribution variation of chlorophyll in the water column. 

The first satellite sensor developed to evaluate Chl-a concentration was the Coastal Zone 
Color Scanner (CZCS) onboard Nimbus 7 which was launched in late 1978. A two-band ratio 
of 443–550 nm was calibrated and routinely used for Chl-a estimation (O'Reilly et al., 1998). 
Two more operational sensors were also developed for the monitoring of Chl-a concentration 
using bands in the blue and the green regions (Sea-viewing Field of view sensor—SeaWIFS- 
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and Moderate resolution Imaging Spectroradiometer — MODIS) (O'Reilly et al., 1998; 
Schalles, 2006). 

The Chl-a algorithms in ocean waters are based on a simple interaction of phytoplankton 
density with water, in which usually blue to green band ratios have a robust and sensitive 
relation to Chl-a during low concentration levels (1–30 mg/m3). This relationship becomes 
less sensitive at higher Chl-a concentration (above 30 mg/m3) and is highly compromised by 
the effects of colored dissolved organic matter (CDOM) in turbid and optically complex waters 
(Schalles, 2006). Indeed, chlorophyll retrieval algorithms adopting blue to green band ratios 
have been shown to be robust for offshore waters, but are known to be sensitive to 
interference from non-algal constituents (particularly CDOM), as well as uncertainties 
brought about by atmospheric correction failure over highly turbid waters. 

The distinct scattering/absorption features of Chl-a are the strong absorption between 
400–500 nm (blue) and 680 nm (red), and the reflectance maximums at 550 nm (green) and 
700nm (near-infrared-NIR) (Han, 1997). Wavelength range for characterizing Chl-a is between 
400 nm and 900 nm (Han and Jordan, 2005). Therefore, the four bands mostly associated with 
Chl-a are the blue, green, red and NIR bands (Han, 1997; Yew-Hoong Gin et al., 2002). 

According to Schalles (2006), low Chl-a concentration (<2 mg/m3) shows higher 
reflectance in the blue part of the spectrum (400–500 nm) and reflectance decreases as 
wavelength increases, with extremely low reflectance values, near 0, in the near infrared 
spectrum (NIR, 700–800 nm); Chl-a concentrations between 2 and 30 mg/m3 show higher 
reflectance in the green (500–600 nm) and red bands (600–700 nm), with peak reflectance in 
the green part of the spectrum; and Chl-a concentrations over 300 mg/m3, show peak 
reflectance in the NIR and minimum high in the green part of the spectrum, the blue and red 
bands show low reflectance. 

These principles are used to select bands and develop algorithms to retrieve Chl-a from 
satellite images since it is evident that spectral signature changes depending on the content 
of Chl-a in water. Usually, local-based algorithms are needed for inland water bodies, and 
they vary significantly from one site to another since their development is based on the 
specific optical constituents of a water body. 

These operational algorithms are based on comparing blue to green ratios and have been 
generated for oceanic waters in which color is dominated by phytoplankton. The largest value 
of the ratios is used in a fourth-order polynomial regression equation, as the exponential term 
in a power function equation. These exponential equations best represent the sigmoidal 
relationship between Chl-a and the band ratio calculations (O'Reilly et al., 1998). The good 
performance of blue and green ratios in oceanic waters is due to the general tendency that 
as the phytoplankton concentration increases, reflectance decreases in the blue (400–515 
nm) and increases in the green (515–600 nm) (Kirk, 1994). Ocean color and meteorological 
instruments have a coarse spatial resolution which precludes their applications to small inland 
lakes (Cao et al., 2020). 

Some efforts have been made to find suitable sensors, but none were specifically designed 
for inland waters. Many lake Chl-a estimations were performed using ocean satellites color 
sensors including the Coastal Zone Color Scanner (Antoine et al., 1996), SeaWiFS (Dall'Olmo 
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et al., 2005) and Earth Observation Systems, e.g., Moderate Resolution Imaging 
Spectroradiometer (Gitelson et al., 2008), Medium Resolution Imaging Spectrometer (MERIS) 
(Gitelson et al., 2008; Gurlin et al., 2011), meteorological satellite, like Advanced Very High 
Resolution Radiometer (Ibelings et al., 2003), and medium to high resolution land resources 
satellite, such as Landsat Operational Land Imager (OLI) (Liu et al., 2020) and Sentinel 
Multispectral Imager (MSI) (Toming et al., 2016). 

The launch of Multispectral Imager’s (MSI) onboard Copernicus Sentinel-2 mission in 2015 
opened a great new potential in small water bodies remote sensing. The derived imagery 
comes with a spatial resolution of 10 m, 20 m and 60 m, depending on the band, exposing the 
monitoring of small waterbodies with more sophisticated algorithms based on neural 
networks, like the Case-2 Regional CoastColour (C2RCC) developed by ESA CoastColour 
project. 

The Sentinel 3A satellite sensor OLCI (Ocean and Land Colour Instrument) launched in 
February 2016 by the European Space Agency (ESA) is particularly useful for chlorophyll 
retrievals due to their waveband selection in the red and near-infra-red (R-NIR) portion of the 
spectrum. 

Algorithm approaches exploiting the R-NIR perform well in turbid eutrophic waters and 
line-height algorithms, such as the Maximum Chlorophyll Index (MCI), the Cyanobacteria 
Index (CI) and the Maximum Peak Height (MPH), are particularly favorable due to their 
relative insensitivity to uncertainties in atmospheric correction. Indeed, the application of 
line-height algorithms to uncorrected or partially atmospherically-corrected (using the 
bottom of Rayleigh reflectance) aquatic colored satellite data has become increasingly 
popular. The MCI, CI and MPH indices are well validated for the detection of dense surface 
algal blooms and have been calibrated for quantitative mapping of chlorophyll concentrations 
in a range of coastal and inland waters. Similarly, phycocyanin (PC) is a frequently used 
cyanobacteria marker pigment and forms the basis of many proposed remote sensing 
algorithms for detecting cyanobacteria. 

2 Materials and Methods 

2.1 In situ data collection 

Field measurements were carried out during the period 2015-2018, from the shallow parts 
of the lagoons under study. Water samples from the surface of the lagoons were collected 
and Chl-a concentration was determined. A database of 130 Chl-a values is created. Those in-
situ Chl-a concentration values were used to evaluate and calibrate the remote sensing 
algorithms using the Takagi-Sugeno neurofuzzy model. 
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2.2 Remote sensing images 

2.2.1 Copernicus Sentinel-2 Mission 

The Copernicus Sentinel-2 mission comprises a constellation of two polar-orbiting 
satellites placed in the same sun-synchronous orbit, phased at 180° to each other. It aims at 
monitoring the variability in land surface conditions, and its wide swath width (290 km) and 
high revisit time (10 days at the equator with one satellite, and 5 days with 2 satellites under 
cloud-free conditions, which results in 2-3 days at mid-latitudes) will support monitoring of 
Earth’s surface changes. Sentinel-2 satellites are on track from 2015 to today and image data 
files consist of twelve spectral bands with a maximum resolution of 10 m (Table 1). 

Table 1. Spectral bands, central wavelengths (nm) and corresponding spatial resolutions (m) 
of Sentinel-2 MSI sensor. 

Bands 
Central wavelength 

(nm) 
Spatial Resolution 

(m) 

Band 1 Coastal aerosol 443 60 

Band 2 Blue 490 10 

Band 3 Green 560 10 

Band 4 Red 665 10 

Band 5 Red Edge-1 705 20 

Band 6 Red Edge-2 740 20 

Band 7 Red Edge-3 783 20 

Band 8 NIR 842 10 

Band 8A NIR Vapor 865 20 

Band 9 Water Vapor 945 60 

Band 10 SWIR-Cirrus 1375 60 

Band 11 SWIR-1 1.610 20 

Band 12 SWIR-2 2190 20 

2.2.1.1 Sentinel- 2 Data 

Sentinel-2 (2A and 2B) imagery was retrieved from Sentinel Scientific Data Hub 
(https://scihub.copernicus.eu/) and Earth Explorer (https://earthexplorer.usgs.gov/) 
databases. Sentinel-2 products are a compilation of elementary granules of fixed size, along 
with a single orbit. A granule is the minimum indivisible partition of a product (containing all 
possible spectral bands). For Level-1C and Level-2A (Figure 2), the granules, also called tiles, 

https://scihub.copernicus.eu/
https://earthexplorer.usgs.gov/
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are 100 × 100 km ortho-images in UTM/WGS84 projection that divides the Earth's surface 
into 60 zones. Each UTM zone has a vertical width of 6° of longitude and horizontal width of 
8° of latitude. 

 

Figure 2. Graphical Representation of Sentinel-2 Core Products. 

In this study the historical satellite images were retrieved for the tiles T34TGL, T35TKF and 
T35TLF in order to cover the entire area of the Greek Pilot area and the period from the early 
2015 to 2021 (Figure 3). 

 

Figure 3. Sentinel-2 tiles over study area of Greek Pilot site (Nestos delta zone). 
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The satellite images with clouds over the study sites were not used for the Chl-a 
determination analysis. All images were retrieved in L1C product in order to use the same 
atmospheric correction for all of them. The number of retrieved images appear in Table 2. 

Table 2. Retrieved images from Sentinel-2 mission for each lagoon through years 2015-2021. 

Year Tile Vassova Eratino Agiasma Porto Lagos Xirolimni Ptelea 

2015 

T34TGL 8 8 8    

T35TKF 1 1 1    

T35TLF    8 8 8 

2016 

T34TGL 3 3 3    

T35TKF 1 1 1    

T35TLF    6 6 6 

2017 

T34TGL 17 17 17    

T35TKF 3 3 3    

T35TLF    22 22 22 

2018 

T34TGL 31 31 31    

T35TKF 1 1 1    

T35TLF    31 31 31 

2019 

T34TGL 21 21 21    

T35TKF 12 12 12    

T35TLF    28 28 28 

2020 

T34TGL 44 44 44    

T35TKF 1 1 1    

T35TLF    47 47 47 

2021 
T34TGL 14 14 14    

T35TLF    13 13 13 

Sum  157 157 157 155 155 155 

2.2.2 Landsat 4-5 Thematic Mapper (TM) 

The Landsat sensors have been widely used for the estimation of optically-related water 
quality parameters, such as total Chl-a, suspended matter, turbidity, Secchi disk depth, total 
phosphorus, dissolved oxygen, chemical oxygen demand (COD), and biochemical oxygen 
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demand (BOD) (Gholizadeh et al., 2016; Ouma et al., 2020). The 30-m spatial resolution of 
their images allows measurements even on small water systems (~ 0.08 km2) (Brezonik et al., 
2005). 

Landsat 4-5 was on board from July 1982 to May 2012. It carries the Landsat Thematic 
Mapper (TM) sensor and has a 16-day repeat cycle. Their image data files consist of seven 
spectral bands (Table 3) and the resolution is 30 m for bands 1 to 7 (thermal infrared band 6 
was collected at 120 m, but was resampled to 30 meters). The approximate scene size is 170 
km north-south by 183 km east-west. 

Table 3. Spectral bands, wavelengths (nm) and corresponding spatial resolutions (m) of 
Landsat 4-5. 

Band 
Wavelength 

(μm) 

Resolution 

(m) 

B1 Blue 0.45-0.52 30 

B2 Green 0.52-0.60 30 

B3 Red  0.63-0.69 30 

B4 NIR 0.76-0.90 30 

B5 SWIR-1 1.55-1.75 30 

B6 TIR 10.4-012.50 120 (30) 

B7 SWIR-2 2.08-2.35 30 

2.2.3 Landsat 7 Enhanced Thematic Mapper Plus (ETM+) 

Landsat 7 was launched in April 1999 carrying the Enhanced Thematic Mapper Plus (ETM+) 
sensor. This instrument is an improved version of the Thematic Mapper instruments that 
were onboard Landsat 4 and Landsat 5. Landsat 7 orbits the Earth at 705 km in a sun-
synchronous, near-polar orbit (98.2 degrees inclination) and has a 16-day repeat cycle with 
an equatorial crossing time: 10:00 a.m. 

Landsat 7 images consist of eight spectral bands (Table 4) with a spatial resolution of 30 
m for Bands 1 to 7. The resolution for Band 8 (panchromatic) is 15 m. Approximate scene size 
is 170 km north-south by 183 km east-west. 

2.2.4 Landsat 8 

The Landsat 8 mission launched in February 2013 and orbits the Earth in a sun-
synchronous, near-polar orbit (98.2 degrees inclination) and has a 16-day repeat cycle with 
an equatorial crossing time of 10:00 a.m. +/- 15 minutes.  
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Landsat 8 mission carries the Operational Land Imager (OLI) and the Thermal Infrared 
Sensor (TIRS) instruments. The OLI comprises 9 bands, measuring in the visible, near infrared, 
and shortwave infrared portions (VNIR, NIR, and SWIR) of the spectrum. The TIRS includes 2 
bands and measures land surface temperature in two thermal bands with a new technology 
that applies quantum physics to detect heat. These two sensors provide seasonal coverage of 
the global landmass at a spatial resolution of 30 meters (visible, NIR, SWIR); 100 meters 
(thermal); and 15 meters (panchromatic).  

Table 4. Spectral bands, wavelengths (nm) and corresponding spatial resolutions (m) of 
Landsat 7 and 8. 

Landsat 7 Landsat 8 

Band 
Wavelength 

(μm) 

Spatial 
Resolution 

(m) 
Band 

Wavelength 
(μm) 

Spatial 
Resolution 

(m) 

  
  B1 Coastal/Aerosol 0.435-0.451 30 

B1 Blue 0.441-0.514 30 B2 Blue 0.452-0.512 30 

B2 Green 0.519-0.601 30 B3 Green 0.533-0.590 30 

B3 Red  0.631-0.692 30 B4 Red  0.636-0.673 30 

B4 NIR 0.772-0.898 30 B5 NIR 0.851-0.879 30 

B5 SWIR-1 1.547-1.749 30 B6 SWIR-1 1.566-1.651 30 

B7 SWIR-2 2.064-2.345 30 B7 SWIR-2 2.107-2.294 30 

B8 Panchromatic 0.515-0.896 15 B8 Panchromatic 0.503-0.676 15 

    B9 Cirrus 1.363-1.384 30 

B6 TIR 10.31-12.36 60 B10 TIR-1 10.60-11.19 100 

    B11 TIR-2 11.500-12.510 100 

The OLI sensor is compatible with the earlier Landsat sensors and presents improved 
measurement capabilities. It provides two new spectral bands, one tailored especially for 
detecting cirrus clouds and the other for coastal zone observations. TIRS collects data for two 
more narrow spectral bands in the thermal region formerly covered by one wide spectral 
band on Landsats 4–7. The 100 m TIRS data is registered to the OLI data to create 
radiometrically, geometrically, and terrain-corrected 12-bit data products. 

2.2.4.1 Landsat 8 Data 

Landsat 8 imagery was retrieved from Earth Explorer database 
(https://earthexplorer.usgs.gov/). The scene size is approximately 170 km north-south by 183 
km east-west. 

In this study the historical satellite images with path and row (183,31), (183,32) and 
(182,32) were retrieved in order to cover the Greek Pilot area for the period 2013-2015.  

https://earthexplorer.usgs.gov/
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All images were retrieved in L1C product in order to use the same atmospheric correction 
for all of them. The number of retrieved images appear in Table 5. 

Table 5. Retrieved images from Landsat 8 for each lagoon through years 2015-2021. 

Year Path Row Greek Pilot area 

2013 

183 32 11 

183 31 10 

182 32 10 

2014 

183 32 7 

183 31 6 

182 32 10 

2015 

183 32 13 

183 31 12 

182 32 14 

Sum   93 

2.3 Satellite Data Processing 

2.3.1 C2RCC Processor 

The C2RCC outputs results for Chl-a and TSM concentration, however algorithm execution 
demands additional background information, such as water surface salinity, elevation, ozone, 
water surface temperature, and air pressure. To increase the accuracy of the processor, 
salinity and temperature values were used from previous in situ measurements. Values for 
the surface ozone layer and air pressure were retrieved from the ERA5 model, a fifth 
generation ECMWF atmospheric reanalysis dataset of the global climate, covering the period 
from January 1950 to present and providing hourly estimates in a large number of 
atmospheric, land and oceanic climate variables, with 30km spatial resolution. 

 

2.3.2 The Takagi-Sugeno neuro-fuzzy model 

A fuzzy model is a non-linear method aiming to create a quantitative model utilizing data 
collected from complex phenomena. A series of "IF-THEN" rules help to define the mapping 
of inputs to outputs. A rule is made up of input and output variables and adjectives such as 
“low” and “high” that identify those variables. Before constructing a Takagi–Sugeno-rule-
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based fuzzy inference system, all the terms should be defined together with the adjectives 
that describe them.  

In this study, a Takagi-Sugeno neuro-fuzzy model was developed aiming to inter-calibrate 
the Chl-a concentration values. A database of 130 in-situ Chl-a concentration values were 
associated with the respective reflectance values from bands 4 to 7 of Sentinel 2 and bands 1 
to 5 of Landsat 8. 60% of data from the database were used for training the Takagi-Sugeno 
neuro-fuzzy model, 20% for model validation and 20% for model testing. The model was 
implemented in Matlab 2018, utilizing the standard Adaptive Neural Fuzzy Inference System 
(ANFIS) algorithm. Initially, the fuzzification of input values (4 antecedents: reflectances at 
each band; 1 output: log(Chl-a)) through the general bell-shaped membership function and 
the grid partition method, led to the definition of membership values in the three fuzzy sets 
(“low”, “medium”, “high”). Then, a series of multiple-input–single output fuzzy rules were 
applied of the form: if band1 is “LOW” AND band2 is “MEDIUM” AND band3 is “LOW” and 
band4 is “HIGH” then log(Chl-a) = f(band1, band2, band3, band4). Finally, the evaluation and 
weighting of the basis functions and the final evaluation of the output Chl-a value were 
followed in the defuzzification step.  

Model testing error analysis exhibited the following metrics: Mean Squared Error = 
0.000018; Root Mean Squared Error = 0.00418; r2 = 0.996 for Sentinel 2 and Mean Squared 
Error = 0.000043; Root Mean Squared Error = 0.00659; r2 = 0.925 for Landsat 8. 

Figure 4 presents the distribution of the three fuzzy sets per Sentinel 2 band.  
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Figure 4. The fuzzy sets per Sentinel 2 band. 

All input data, along the x-axis of the following diagrams, were normalized prior the neuro-
fuzzy implementation. The y-axis represents the degree of membership of each input value 
into a specific fuzzy set. 

Figure 5 illustrates the variation in the training and testing errors, between the observed 
and modelled values throughout the model iterations. It occurs that after a certain number 
of iterations the training error remains stable at very low levels (0.001 0.004 mg/m3) while 
the testing error converges towards 0.004 mg/m3. Figure 6 depicts the change of the 
prediction error over the iterations performed by the TS neuro-fuzzy model. 

 

Figure 5. The variation of the training prediction error with the number of model iterations. 
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Figure 6. The variation of the prediction error with the number of model iterations. 

2.3.3 The PONTOS Methodological Framework 

Figure 7 describes the methodological framework of PONTOS eutrophication assessment 
and monitoring. Sentinel 2 and Landsat 8 satellite images were collected for the study area 
and period. All images were stored on the local DUTH server purchased from PONTOS project 
for that purpose. Satellite images were imposed on subsetting, atmospheric correction and 
resampling. Chl-a data were derived using the Takagi-Sugeno neuro-fuzzy model and maps of 
surface Chl-a concentration distribution were created. Furthermore, data were statistically 
analyzed, frequency distributions per lagoon were examined and threshold Chl-a levels for 
the identification and warning of extreme eutrophic events and blooms were established. 
Probability density functions and cumulative density functions were fitted on the histograms 
and the probability of threshold exceedance per lagoon and per lagoon’s specific zone were 
assessed. Maps of probability for threshold exceedance were created illustrating areas 
vulnerable and prone to eutrophication. 

 

Figure 7. The PONTOS methodological framework for eutrophication assessment. 

2.4 Eutrophication Assessment 

Several trophic conditions classification schemes have been proposed in the literature to 
assess the environmental state of aquatic systems in terms of nutrients recycling. More 
complete trophic classification schemes are based on nutrients (phosphates, nitrates, 
ammonium), chlorophyll-a and total number of phytoplankton cells. Aquatic systems are 
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classified into oligotrophic, lower mesotrophic, higher mesotrophic and eutrophic and ranges 
are given per parameter. Nutrient concentrations are given in μM, phytoplankton cells 
number in cells/l and chlorophyll in μg/l. 

Table 6. Classification of aquatic systems according to their trophic conditions. 

Parameter Oligotrophic 
Lower 

mesotrophic 
Higher 

mesotrophic 
Eutrophic 

Phosphates (PO4) 
(μM) 

<0.07 0.07-0.14 0.14-0.68 >0.68 

Nitrates (NO3) 
(μM) 

<0.62 0.62-0.65 0.65-1.19 >1.19 

Ammonium (NH4) 
(μM) 

<0.55 0.55-1.05 1.05-2.20 >2.20 

Phytoplankton 
(cells/l) 

<6.0×103 6.0×103-1.5×105 1.5×105-9.6×105 >9.6×105 

Chlorophyll-a 
(μg/l) 

<0.10 0.10-0.60 0.60-2.21 >2.21 

The scheme above introduces a scale with four levels of eutrophication: eutrophic, higher 
mesotrophic, lower mesotrophic and oligotrophic, though 5 classes are required for WFD. 

To achieve this harmonization, a new eutrophication scale was proposed by Karydis (1996) 
and Simboura et al. (2005), to comply with the ecological status levels described in WFD. 

To process the satellite-derived Chl-a data, a chlorophyll multimetric is proposed to 
incorporate compliance assessment of five statistics in chlorophyll biomass: 

⮚ mean 

⮚ median 

⮚ percentage compliance over a threshold (10 µg/l Chl) 

⮚ percentage compliance over a threshold (20 µg/l Chl) 

⮚ percentage exceedance over a maximum threshold (50 µg/l Chl). 

Estimates for the chlorophyll-a multimetric are proposed to delineated into two salinity 
zones, inner (salinity 1 - 25) and outer (salinity > 25), with thresholds for assessing compliance 
of the statistics, for each specific salinity zone. 

To assess the percentages exceeding a certain threshold value, historic Chl-a data derived 
from satellite images were collected at specific sites, representing diverse conditions within 
each lagoon. These data were used to assess the probability of exceedance of a certain Chl-a 
level. Several probability density functions are available in the literature to be fitted on these 
Chl-a distributions. Therefore, on the Chl-a frequency histogram the best theoretical 
probability density function was fitted. The AIC and BIC minimization served as the criteria to 
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select the most appropriate fitting model and assess the probability of Chl-a eutrophication 
threshold exceedance, set at 2 mg/m3.  

2.5 Study Site Description 

2.5.1 The Greek Pilot area (PONTOS-GR) 

The Greek Pilot area consists of 3 lagoons that belong to the Nestos complex (Vassova, 
Eratino and Agiasma lagoon), one located in Xanthi Prefecture (Porto-Lagos lagoon) and two 
in Rodopi Prefecture (Xirolimni and Ptelea lagoon) (Figure 8). All these lagoons are ecologically 
important sites, part of the East Macedonia and Thrace National Park and protected by the 
Convection on Wetlands of International Importance (Ramsar Convention) (Tsihrintzis et al., 
2007). 

 

Figure 8. Lagoons under study. 
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2.5.1.1 Vassova lagoon 

Vassova lagoon is a small in size (2.7 km2) and shallow (mean depth: 0.8 m) coastal lagoon 
located at the western bank of river Nestos (Figure 9). The lagoon consists of a central main 
basin used for extensive aquaculture, and 16 dredged wintering canals, ranging from 30 to 50 
m long and 0.5 m deep each. Vassova lagoon may be considered as a closed system, i.e., there 
is no freshwater input except directly from rainfall and through seepage from the adjoining 
agricultural lands. The lagoon is connected to the open sea (Kavala Gulf, North Aegean Sea) 
with an inlet channel approximately 15 m wide, 200 m long and 0.7 – 0.8 m deep at mean sea 
level. This lagoon is ecologically important providing water-fowl habitat, and is also exploited 
for fish production (30 tn/year) (Sylaios et al., 2006). 

 

Figure 9. Vassova lagoon. 
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2.5.1.2 Eratino lagoon 

Eratino Lagoon is approximately 2.9 km2, with a length of about 5.9 km, average width of 
0.7 km (maximum width of 1.5 km) and a perimeter of 43 km (Figure 10). The mean depth of 
the lagoon is 0.8 m and the maximum depth 3.4 m. The lagoon is connected to the open sea 
(Kavala Gulf) with two inlet channels and it communicates with Vassova lagoon through a 
narrow, shallow channel (Tsihrintzis et al., 2007). Eratino receives fresh water by a natural 
channel in the northern part of the basin and agricultural runoff by direct drainage (Sylaios 
and Theocharis, 2002). 

 

Figure 10. Eratino lagoon. 
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2.5.1.3 Agiasma lagoon 

Agiasma, a shallow lagoon with a mean depth of 0.5 m, covers an area of 3.3 km2, with a 
length of about 7 km, a mean width of 0.8 km and a perimeter of 24.3 km. It is connected with 
the sea with two narrow outlets (Figure 11). The outlet in the middle of the basin remains 
open during stocking, from mid-February to May, while the outlet in the south part of the 
lagoon is always open. Agiasma is considered to be one of the less affected by eutrophication 
system of the Nestos Delta complex (Orfanidis et al., 2008). 

 

Figure 11. Agiasma lagoon. 
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2.5.1.4 Porto Lagos lagoon 

Porto Lagos is a shallow coastal lagoon, with a mean depth of about 0.5 m and covers an 
area of 3.75 km2 (Figure 12). It is connected to Vistonis Lake through three short channels (50 
m long and 25 m wide) and to Vistonikos Gulf (Thracian Sea, Northern Aegean Sea) through a 
channel 60 m wide and 600 m long. It is a micro-tidal environment with tidal range less than 
0.30 m during spring tides. Wave action is negligible and water circulation allows for the 
sufficient oxygenation of the lagoon. Water is generally turbid; highest turbidity was observed 
during the warmest months. The lagoon bottom is regular, covered by soft mud and sand on 
the periphery. Salt marshes, mudflats and sandflats border the lagoon. Seagrasses constitute 
the majority of submerged aquatic vegetation (Koutrakis et al., 2005). 

 

Figure 12. Porto-Lagos lagoon. 
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2.5.1.5 Xirolimni lagoon 

Xirolimni lagoon has an average depth of 0.6 m covering an area of 1.8 km2 and is located 
on the western side of the Fanari settlement (Figure 13). It connects to the sea with a narrow, 
320 m long outlet. Xirolimni receives fresh water from precipitation and direct runoff. 

 

Figure 13. Xirolimni lagoon. 
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2.5.1.6 Ptelea lagoon 

Ptelea is a shallow system with an area of 3.6 km2. It communicates with Elos lagoon from 
the East and with the Thracian Sea through a narrow inlet (Figure 14). Both Xirolimni and 
Ptelea are located within an agricultural watershed and they receive fresh water from 
precipitation or direct drainage. 

 

Figure 14. Ptelea lagoon. 

All six lagoons are surrounded by permanent cultivated areas (mostly cotton, maize, 
alfalfa), which leads to receiving agricultural runoff especially during flash flood events. 
Lagoons are forced by similar tidal influence (spring tidal range 0.4 m and neap tidal range 0.2 
m) at their mouths and they belong to the same Koppen climatic zone (Csb, warm summer 
Mediterranean climate). Mean annual precipitation is around 320 mm ranging between 420 
– 430 mm and air temperature between -5-38 °C with mean temperature around 15 °C. In 
North Aegean Sea, winds blowing from the north and northeast dominate, while south-
southwestern winds prevail in spring and summer. The geometric and hydrologic parameters 
for the six lagoons are summarized in at Table 7. 
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Table 7. Study sites and their Geometric and hydrologic characteristics. 

Lagoon Geographical boundaries A (km2) h (m) V (km3) 
Perimeter 

(km) 

Vassova 24.552° A, 40.929° B : 24.569° A, 40.957° B 2.70 0.80 3.00×10-3 5.25 

Eratino 24.566° Α, 40.894° Β : 24.605° Α, 40.938° Β 2.88 0.77 2.23×10-3 42.50 

Agiasma 24.612° Α, 40.853° Β : 24.625° Α, 40.913° Β 3.33 0.50 1.66×10-3 24.30 

Porto-
Lagos 

25.133° Α, 40.979° Β : 25.168° Α, 41.011° Β 4.91 1.00 3.16×10-3 40.00 

Xirolimni 24.608° Α, 40.861° Β : 24.637° Α, 40.903° Β 1.76 0.52 0.90×10-3 6.42 

Ptelea 25.232° A, 40.923° B : 25.264° A, 40.964° B 3.60 0.80 2.90×10-3 6.93 

where A = lagoon surface area, h = mean lagoon water depth, V = lagoon water volume 

3 Results 

3.1 Spatial Chlorophyll analysis 

By applying the Takagi-Sugeno neuro-fuzzy model, the spatio-temporal distribution of 
Chl-a concentration data were obtained and mapped. Satellite images for the period 2013-
2021 were processed. Period 2013-2015 was covered by Landsat 8 images and period 2015-
202I by Sentinel 2 images. Indicatively, a series of images throughout the years are 
presented, to show the seasonal evolution of Chl-a for each of the lagoons under study. 

3.1.1 Vassova lagoon 

Figures 12-21 show the spatial distribution of Chl-a in Vassova lagoon for the year 2013-
2021. During 2013 (Figure 15), the highest Chl-a concentration values were reached in August. 
The increase started from the upper part of the basin and in the following summer months it 
moved to the central basin. In the autumn and winter months, the Chl-a values are decreased. 
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Figure 15. Seasonal evolution of Chl-a concentration in Vassova lagoon for the year 2013, 
based on Landsat 8 satellite images. 

During 2014 (Figure 16), the Chl-a values were low from January to early July. Then they 
showed an increase at the northern part of the basin. The Chl-a values started to decrease in 
the following months.  
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Figure 16. Seasonal evolution of Chl-a concentration in Vassova lagoon for the year 2014, 
based on Landsat 8 satellite images. 

The first half of 2015 is presented in Figure 17 covered by Landsat 8 and the second half 
is presented in Figure 18 covered by Sentinel 2. During the first half of the year, Chl-a values 
decreased from January to February and then started increasing again until April. 

Higher values are observed in the summer. At the end of the summer, Chl-a decreased 
until the end of the year, starting from the center of the basin and then spreading towards 
the coast.  
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Figure 17. Seasonal evolution of Chl-a concentration in Vassova lagoon for the year 2015, 
based on Landsat 8 satellite images. 
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Figure 18. Seasonal evolution of Chl-a concentration in Vassova lagoon for the year 2015, 
based on Sentinel 2 satellite images. 

The same pattern in Chl-a evolution is observed in 2016 (Figure 19), where the higher 
values are observed in the summer months and the decrease as we move on to the autumn 
and winter. The Chl-a values in the wintering canals increased in the summer and reached 
their highest values in September 2016.  
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Figure 19. Seasonal evolution of Chl-a concentration in Vassova lagoon for the year 2016, 
based on Sentinel 2 satellite images. 

Figure 20 shows the increase, from the low concentrations from the beginning of the year 
to the highest in June. The increase begins from the north and then expands to the rest of the 
basin. In the following months, Chl-a values decreased and then increased again, reaching 
their highest values in August. In the following months, Chl-a decreases until the end of the 
year.  

The selected images for 2018 (Figure 21) show the increase of Chl-a values, from low 
concentrations at the beginning of the year until the summer, where the highest values occur 
in August. The highest values are observed at the center of the basin. In the following months, 
Chl-a values decrease until December.  
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Figure 20. Seasonal evolution of Chl-a concentration in Vassova lagoon for the year 2017, 
based on Sentinel 2 satellite images. 

Years 2019-2021 show a similar pattern in Chl-a values evolution (Figures 19-21). Initially, 
there is an increase of Chl-a values from January until August and after August, a decrease 
starts until the end of the year. The Chl-a increase starts from the north shore, then spreads 
to the center of the basin and ultimately to the wintering canals. 
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Figure 21. Seasonal evolution of Chl-a concentration in Vassova lagoon for the year 2018, 
based on Sentinel 2 satellite images. 
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Figure 22. Seasonal evolution of Chl-a concentration in Vassova lagoon for the year 2019, 
based on Sentinel 2 satellite images. 
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Figure 23. Seasonal evolution of Chl-a concentration in Vassova lagoon for the year 2020, 
based on Sentinel 2 satellite images. 
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Figure 24. Seasonal evolution of Chl-a concentration in Vassova lagoon for the year 2021, 
based on Sentinel 2 satellite images. 

3.1.2 Eratino lagoon 

Figures 22-31 show the spatial distribution of Chl-a in Eratino lagoon for the years 2013-
2021. During 2013 (Figure 25), the highest Chl-a concentration values were reached in July 
(up to 4.0 μg/l). The increase in Chl-a concentration started from the center of the basin and 
in the following summer months moved to the eastern and the southern parts of the lagoon. 
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In autumn and winter months, the Chl-a values decreased, with the northern and the 
southern parts having higher values than the center of the basin.  

 

Figure 25. Seasonal evolution of Chl-a concentration in Eratino lagoon for the year 2013, 
based on Landsat 8 satellite images. 

During 2014 (Figure 26), the Chl-a values were low from January to early July when they 
showed an increase at the northern part of the basin. The Chl-a values continued to increase 
and they reached the highest values in December 2014 (2.2 μg/l).  
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Figure 26. Seasonal evolution of Chl-a concentration in Eratino lagoon for the year 2014, 
based on Landsat 8 satellite images. 

The first half of 2015 is presented in Figure 27 covered by Landsat 8 and the second half 
is presented in Figure 28 covered by Sentinel 2. The highest values were detected in 
December 2014, led to similarly high values in January 2015 (Figure 27). Chl-a values 
decreased from January to February and then started increasing again until April. In April the 
bottom part of the lagoon shows lower concentrations (1.0-2.0 μg/l).  
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Figure 27. Seasonal evolution of Chl-a concentration in Eratino lagoon for the year 2015, 
based on Landsat 8 satellite images. 

Figure 28 shows that the higher values are observed during the summer. At the end of the 
summer Chl-a deceased until the end of the year, with the exception of the southeast part, 
which seems to retain higher values compared to the rest of the basin. 
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Figure 28. Seasonal evolution of Chl-a concentration in Eratino lagoon for the year 2015, 
based on Sentinel 2 satellite images. 

The same pattern in Chl-a evolution is observed in 2016, where the higher values are 
observed in the summer months and they decrease as we move on to the autumn and winter. 
The higher values at the eastern parts in the autumn and winter months are also observed in 
2016 (Figure 29).  
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Figure 29. Seasonal evolution of Chl-a concentration in Eratino lagoon for the year 2016, 
based on Sentinel 2 satellite images. 

Figure 30 shows the increase, from the low concentrations from the beginning of the year 
to the highest in June. The increase begins from the south and then expands to the rest of the 
basin. In the following months, Chl-a values decreased until the lowest level was reached at 
the end of autumn. At the end of December, a small increase in Chl-a is observed. The 
southeast part keeps showing higher values compared to the rest of the lagoon.  
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Figure 30. Seasonal evolution of Chl-a concentration in Eratino lagoon for the year 2017, 
based on Sentinel 2 satellite images. 

Figure 31 shows the temporal and spatial evolution during 2018. Chl-a values are low at 
the beginning of the year and increase gradually until late May. The highest values are 
observed at the center of the basin. In the following months, Chl-a values decrease and then 
increase again until they reach the highest values at the end of the summer. Another peak is 
observed in November.  

In 2019 (Figure 32), the first increase in Chl-a starts in late March and remains until late 
June. Then the Chl-a values slightly decrease in July and increase again in late August. The last 
maximum in Chl-a values is observed in November.  

The slightly higher values detected in December 2019 led to high values in January 2020 
(Figure 33). The first Chl-a peak is observed in March 2020 and concentration remains high 
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until the end of the summer. The highest Chl-a values are reached in May 2020. Then Chl-a 
decreases until November. In mid-November, another maximum is reached (2.5-3.5 μg/l).  

During 2021 (Figure 34), maximum Chl-a values are reached in February (2.5-3.5 μg/l) and 
then in May (2.5-4.5 μg/l). Higher values localize at the center part of the lagoon. In the 
following months, the Chl-a values decrease until the end of the year.  
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Figure 31. Seasonal evolution of Chl-a concentration in Eratino lagoon for the year 2018, 
based on Sentinel 2 satellite images. 
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Figure 32. Seasonal evolution of Chl-a concentration in Eratino lagoon for the year 2019, 
based on Sentinel 2 satellite images. 
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Figure 33. Seasonal evolution of Chl-a concentration in Eratino lagoon for the year 2020, 
based on Sentinel 2 satellite images. 
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Figure 34. Seasonal evolution of Chl-a concentration in Eratino lagoon for the year 2021, 
based on Sentinel 2 satellite images. 



 

 

48 

 

 

3.1.3 Agiasma lagoon 

Figures 32-41 show the spatial distribution of Chl-a in Agiasma lagoon for the years 2013-
2021. In April 2013, high Chl-a values are determined at the western part of the lagoon (up to 
45 μg/l), however low values are detected in the rest basin (around 1.5 μg/l). In July Chl-a 
increases, starting from the center of the lagoon. In the following months, Chl-a values 
decrease. 

 

Figure 35. Seasonal evolution of Chl-a concentration in Agiasma lagoon for the year 2013, 
based on Landsat 8 satellite images. 


