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1 Introduction 

It is well known that water scarcity stands as one of the most important limiting factors for 
the agricultural sector jeopardizing optimum production (Zamani et al., 2019; Linker et al., 2016). 
According to the latest reports, irrigation is accountable for the 51.4% and 59% of the total 
freshwater consumption in USA and EU, respectively (EEA, 2019; Maupin et al., 2014), whilst a 
further increase in irrigation water demands up to 30% is expected by 2030 (Beddington, 2009). 

Moreover, the latest climate change IPCC scenarios have indicated that the Mediterranean 
Sea is one of the few regions globally in which climate change models project declines in 
precipitation depth, especially during the winter months, with an estimated potential reduction 
up to 40%. For this reason, the area is considered as a climate change “hot-spot” (Tuel and Eltahir, 
2020). This shift in precipitation patterns is expected to affect mainly the winter rainfed crops 
(Abd-Elmabod et al., 2020). In parallel, an expected increase in the mean annual air temperature 
between 1-1.5 °C by 2040, in combination with prolonged heat-waves and consecutive drought 
periods are expected to substantially increase the irrigation water needs of spring-summer crops 
(Todaro et al., 2022). Recent studies conducted within Mediterranean borders, showed that the 
cumulative impacts of the above-mentioned effects may lead to a significant decrease in the 
available quantities of surface and groundwater resources (Rocha et al., 2020), posing a threat 
on food production security and the sustainability of the agricultural sector. 

Coastal river deltas and their broader areas, usually serve as areas of intense agricultural 
exploitation, industry, and commerce (Loucks, 2019). Consequently, the pressure imposed to 
these complex and sensitive areas by the daily human socioeconomic activities results to their 
degradation by e.g., the overexploitation of groundwater resources leading to the salinization of 
coastal aquifers (Nguyen et al., 2019; Rahman et al. 2019), nutrients’ leaching (nitrogen, 
phosphorus) (Mai et al., 2010) and pesticides/herbicides substances from the agricultural land to 
the water resources (Papadopoulou-Mourkidou et al., 2003; Vryzas et al., 2009, 2011). Surface 
runoff and deep percolation (e.g., irrigation/rainfall water infiltration below plants’ rooting 
depth) are the main mechanisms of nutrient and pesticide leaching. Both mechanisms are the 
result of overirrigation or extreme rainfalls. 

Recent studies have shown the potential of crop growth models to be used as irrigation 
scheduling tools, contributing to the rational use of the available water resources, securing the 
agricultural sector sustainability and increasing its resilience in the ongoing changes (Tsakmakis 
et al., 2017; Pereira et al., 2020). However, crop models have an innate level of uncertainty, due 
to the differences among crop cultivars and potential divergence in plants’ response to different 
soils and climate conditions. New generations of low-cost and reliable meteorological stations 
and soil moisture sensors, monitoring the climate conditions and soil moisture levels almost in 
real time, in combination with the advances in satellite remote sensing images, in terms of 
temporal and spatial resolution, promise to ameliorate the crop models uncertainty via an 
operational, in season correction and re-adjustment (Tsakmakis et al., 2021). 
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However, one of the main drawbacks of the crop models is that most of them perform point-
based simulations (Tenreiro et al., 2020). This fact renders their value for region level estimations. 
To bridge this gap some researchers proposed and studied the coupling of crop models with 
hydrological models (e.g., Hydrus) (Siad et al., 2019). Nevertheless, hydrological models demand 
a significant number of inputs, whose determination requires field soil sampling and analysis, 
rendering their watershed level implementation unfeasible. On the other hand, the 
contemporary developments in remote sensing imagery, allowed the upscaling from single point 
modeling into regional scale calculations by exploiting the spatial distribution of vegetation 
indices (e.g., Normalized Difference Vegetation Index, NDVI) within a region (Bellón et al., 2017; 
Han et al., 2020). The acquired remote sensing images in combination with in-situ observations 
and advanced programming techniques (e.g., machine learning and deep learning) allow (a) the 
production of reliable regional crop maps (Frolking et al., 2002; Kussul et al., 2017; Wardlow and 
Egbert, 2008) or/and (b) the transformation of vegetation indices to plant development indices, 
such as the Leaf Area Index and the Green Canopy Cover (CC) (Ashapure et al., 2019; Prathumchai 
et al., 2018; Tsakmakis et al., 2021a; Veerakachen and Raksapatcharawong, 2020; Xu et al., 2019). 
The latter can be used as crop model validation parameters making possible their performance 
evaluation in watershed level. 

Taking into consideration the inelastic and urgent needs to cope with the water scarcity and 
climate change challenges, EU new Common Agricultural Policy (CAP) 2023-2027 revised 
fundamentally the subsidies’ philosophy, giving now a strong emphasis on results and 
performance (Heyl et al., 2021). In this context, the new CAP introduced the term “conditionality” 
meaning that a farmer must achieve certain predefined environmental performance targets (as 
defined within the submitted specific member states CAP strategic plans) if to get subsidies. 
Moreover, to encourage local initiatives and further reduce the agriculture sector environmental 
footprint, new CAP’s “eco-schemes” allow, e.g., farmer partnerships, to set performance goals 
even beyond these defined by “conditionality” and claim extra subsidies by achieving them. 

Thus, well-defined and scientifically sound indices are needed to assess the farmers’ 
performance and judge if they achieve their targets (and receive subsidies) or not. In the case of 
irrigation water consumption, Water Footprint (WF) can be used as such an index. WF is defined 
as the water that is consumed during the production process of a good or the provision of a 
certain service, in the framework of our everyday socio-economic activities (Hoekstra, 2017; 
Hoekstra and Mekonnen, 2012). For the agricultural sector and specifically the soil cultivation for 
crop growing, WF is defined as the total amount of water that is evapotranspirated during a 
crop’s growing season against the tradable weight of the crop’s final product (Chukalla et al., 
2015; Tsakmakis et al., 2018). Since 2015, WF has been used as an evaluation index in several 
studies to access the water use efficiency in river basin or watershed level (Cao et al., 2014; 
D’Ambrosio et al., 2020; Karandish et al., 2015; Zeng et al., 2012; Zhuo et al., 2016), as well as the 
means to assess the potential of the various irrigation system technologies, field management 
practices and irrigation strategies to reduce crop WF (Chukalla et al., 2015; Nouri et al., 2019; 
Tsakmakis et al., 2018). 
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Taking into consideration all the above, the coastal, deltaic part of Nestor River watershed in 
northern Greece was selected as the Greek study area to be analyzed in the framework of the 
Task “Agricultural water balance, water productivity, and water stress indices” of the PONTOS 
project funded by the Operational Program of the Black Sea Basin. For this purpose, three 
popular, water demanding arable crops that are cultivated within the study area, named maize, 
cotton and rice were selected among the various crops. This selection was based on the fact that 
crop models have been proved to be able to simulate with satisfactory accuracy the selected 
crops growing cycle and response to water stress conditions. Successively, data about the total 
cultivated area of each of the selected crops, as well as information about the weather conditions 
prevailing in the area (data from the Chrisoupolis Airport), and available soil data were collected 
from national repositories. Additionally, NDVI maps acquired from Copernicus Sentinel 2 mission, 
were used to estimate the plants’ development curves, while interviews with farmers were 
conducted to gather practices about common field management and irrigation. The collected 
data were fed to a crop model named AquaCrop and the water footprint of the selected crops 
was estimated. The main objectives of the analysis were (a) to produce maps of vegetation 
indices, using satellite imagery data and evaluate the implemented irrigation schedules to derive 
the canopy cover (CC) time series; (b) use a crop model to estimate the actual WF of the most 
popular crops, using typical farmer empirical irrigation schedules; and (c) define the benchmark 
WF for the most popular crops implementing optimum irrigation schedules and compare them 
with the corresponding actual WF values. 

2 Methodology 

The high-level schema of the methodology architecture followed in this study is illustrated in 
Figure 1. In brief, soil, weather, satellite, crop and irrigation data were collected and fed to the 
AquaCrop crop model. The various sources that the data were collected from, as well as the 
required transformations which were performed to them, were described in detail in the 
following sub-sections. 

Once all the data was collected and transformed to the proper format, they were fed to the 
AquaCrop crop model. The model simulated the crop’s growing cycle, by solving the daily water 
balance of the plant-soil-atmosphere continuum, integrating the potential impacts of water 
stress conditions that the plants may experience during the various growing stages, interpreting 
them, e.g., as a reduction in biomass or/and final yield production. 

Finally, the model results were used to assess the implemented irrigation schedule efficiency 
via the WF index. In this study, the green and blue components of WF were estimated, whilst the 
grey component was excluded, due to the lack of the required data to assess it. A set of 
benchmark WF values were derived for each crop, including aspects of the soil hydraulic 
characteristics. 
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Figure 1. High-level schema of the implemented methodology.  
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2.1 Study Site Description 

2.1.1 Soil Data 

The Greek study site consisted of the coastal, plain part of the Nestos River watershed in 
northern Greece. It covers a total area of roughly 43,818 ha, spreading from 41.03°N to 40.85°N 
and 22.55°E to 24.85°E (Figure 2). From this area approximately 12,700 ha are cultivated, divided 
into 32,449 fields, with an average size of 0.9 ha. 

The available regional soil map provided information about the sand and clay fractions, as 
well as the soil organic matter content of the study area fields. When the fields were classified 
based on USDA classification triangle, it was revealed that the eastern side of the Nestos River 
basin is dominated by loams and sandy loams (Figure 2). In the western side of the riverbank, 
loams and sandy loams are still present covering the largest portion of the land, but clay loams 
and sandy clay loams appear as well near the eastern border of the basin. Throughout the study 
area, sandy loams and loams cover an area of 11,555 ha and 13,020 ha, respectively, which 
correspond to roughly 41% and 57% of the total area (Table 1). 

 

Figure 2. Soil textural class distribution within study area. Coordinates are in EPSG:4326 system. 
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Table 1. Main textural classes within the Greek study area. 

Textural Class Area (ha) ATB (%) 

Clay Loam 923.77 3.28 
Loam 13,019.57 57.00 
Sandy Clay Loam 2,329.12 8.27 
Sandy Loam 11,555.42 41.02 

ATB = textural class Area as percentage of the Total Basin cover 

Despite the fact that many fields were classified within the same textural class, significant 
variations on the sand, clay and organic matter content were observed (Figure 2). In the case of 
sandy loam and loam textural classes, the mean value of the sand fraction was found to be 
roughly 59% ± 5.8 and 45% ± 6.11%, respectively (Table 2), with a substantial number of fields 
characterized as outliers, as they located outside the upper and lower whiskers of the box plots. 
Accordingly, the mean sand content for sandy clay loam and clayey loam classes were 55% ± 5.34 
and 37% ± 6, respectively, but strikingly lower outliers were observed, located mainly outside the 
lower whisker bar. 

The mean clay content for the sandy loam, loam, sandy clay loam and clayey loam classes was 
found to be 31% ± 2.62, 16% ± 3.82, 24% ± 3.37 and 32% ± 4.2, respectively (Table 2). Again, a 
considerable number of outliers was observed in the case of sandy loam and loam classes, while 
lower outliers were counted for sandy clay loam and clay loam classes, located outside the upper 
whisker bar this time (Figure 3). 

The maximum and minimum values of the organic matter content were found to be very 
similar for all the textural classes (Table 1), ranging from roughly 0.2% to 3.9%. In general, the 
mean organic matter value showed an increase from the lighter to heavier soils (1.21% and 2.03% 
for sandy loam and clay loam, respectively). 

 

Figure 3. Variability of sand, clay, and organic matter content within the various textural classes. SaLo = 
Sandy Loam; Lo = Loam; SaClLo = Sandy Clay Loam; ClLo= Clay Loam 
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Table 2. Statistics of sand, clay and organic matter content within the various textural classes. 

 SaLo Lo SaClLo ClLo 

Sand (%) 

Mean 58.84 45.39 54.72 36.80 
SD 5.84 6.11 5.34 6.03 
Min 36.29 22.66 33.75 15.00 
Q1 (25%) 54.78 41.29 50.66 32.87 
Q3 (75%) 62.21 49.86 58.72 41.25 
Max 82.51 74.88 69.26 50.53 

Clay (%) 

Mean 12.59 16.47 24.41 31.59 
SD 2.62 3.82 3.37 4.20 
Min 4.06 7.23 15.29 19.78 
Q1 (25%) 11.03 13.74 21.93 28.58 
Q3 (75%) 13.80 18.47 25.94 34.72 
Max 28.98 40.88 38.40 48.15 

Organic Matter (%) 

Mean 1.21 1.56 1.72 2.03 
SD 0.39 0.49 0.52 0.48 
Min 0.20 0.30 0.22 0.43 
Q1 (25%) 0.95 1.23 1.40 1.69 
Q3 (75%) 1.42 1.81 2.05 2.311 
Max 3.74 3.95 3.96 3.60 

SaLo = Sandy Loam; Lo = Loam; SaClLo = Sandy Clay Loam; ClLo= Clay Loam 

2.1.1.1 Soil hydraulic properties 

Crop model simulations demand soil hydraulic properties. Thus, as long as the available data 
contain the sand-clay fractions and the organic matter content per field, pedo-transfer functions 
were implemented to obtain the required saturation point (SP), field capacity (FC), permanent 
wilting point (PWP) and saturated hydraulic conductivity (Ksat) (Saxton and Rawls, 2006). Except 
for the available sand-clay fractions and organic matter, the pedo-transfer functions demand as 
inputs the soil gravel content (GC) and the soil compaction level (SCL). As these data were not 
available, the following hypothetical scenarios were created and implemented to evaluate the 
impact of GC and SCL variations to the soil hydraulic parameters and thus the crop model output 
results. 

Table 3. Hypothetical gravel content values and soil compaction level scenarios. 

Gravel Content (%) Soil Compaction Level 

0 Normal 
10 Normal 
20 Normal 
30 Normal 
40 Normal 



 

11 

50 Normal 
60 Normal 
0 Loose 
0 Dense 
0 Hard 
0 Severe 

 

2.1.2 Crop Data 

According to the national 2018, 2019 and 2020 crop maps, in the study area approximately 
33,918 ha, 34,086 ha and 34,529 ha were cultivated, respectively. Irrigated maize was the most 
popular crop for all years, covering roughly 21-24% of the total cultivated land, 8,000 ha on 
average (Table 4). Cotton and rice covered a significantly lower portion of land, between 2% and 
6%, occupying approximately an area of 660 to 2,289 ha. 

Table 4. Popular arable water demanding crops cultivated within study area in 2018, 2019 and 
2020. 

Crop 
2018 2019 2020 

TCA (ha) RA (%) TCA (ha) RA (%) TCA (ha) RA (%) 

Maize 8,254 24.00 8,045 23.60 7,336 21.25 
Cotton 1,567 4.62 2,289 6.72 1,994 5.77 
Rice 924 2.72 664 1.95 715 2.07 

TCA = Total Crop Area; RA = Relative Area as Total Crop Area/Total Area 

The crop maps (Figures 4, 5 and 6) showed that the distribution pattern of the maize, cotton 
and rice fields was almost identical over the years. In general, maize was cultivated at both sides 
of the riverbank, preferably in sandy loam and loam soils. Almost all rice fields were located at 
the north-western plains of the study area, close to the coastline (Loam, Sandy Loam fields), 
probably due to the water supply canals network infrastructure that exists in this region allowing 
the easy flood of fields with water. On the other hand, cotton fields were observed mostly to the 
eastern side of the riverbank, being cultivated also on heavy soils e.g., clay loams and sandy clay 
loams. 

2.1.2.1 Crop modeling parameters 

In the case of maize crop, the crop file that was created and used as inputs to the AquaCrop 
model were based on experimental results conducted on the broader area of East Macedonia 
and Thrace (Tsakmakis et al., 2021). As local experimental data for the rice and cotton crop are 
not available, data from studies carried out in areas with similar weather conditions were 
exploited to create a rice crop file for the current work. Table 5 presents the values used for each 
key parameter. 
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Table 5. AquaCrop model calibrated values for the non-conservative and conservative parameters, as 
modified in the maize crop default file during the calibration process. 

Parameter Maize 

Non-Conservative Parameters 

Initial Canopy cover, CCo (%) 0.44 
84.00 

0.60 
0.15 

18.00 
0.49 

10.00 

Maximum canopy cover (%) 

Maximum Rooting depth (m) 

Minimum Effective Rotting Depth (m) 

Canopy Growth Coefficient (%/day) 

Canopy Decline Coefficient (%/GDD) 

Base Temperature (°C) 

Conservative Parameters 

Crop coefficient for transpiration (Kcb) 

1.03 
63.00 

0.20 
0.74 
2.50 

Reference Harvest Index (%) 

Upper threshold below which leaf expansion is not 
optimal (pupper) 

Lower threshold below which leaf expansion is 
halted (plower) 

Shape factor of water stress curve (fshape) 

 



 

13 

 

Figure 4. Fields cultivated with maize within the study area in 2018, 2019 and 2020. 
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Figure 5. Fields cultivated with cotton within the study area in 2018, 2019 and 2020. 
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Figure 6. Fields cultivated with rice within the study area in 2018, 2019 and 2020. 
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2.1.3 Weather conditions 

Between the years 2015-2020 the mean air temperature in the study area ranged from 15.2 
to 16.2 °C, showing a slight upward trend (Table 6; Figure 7). During the early morning hours of 
January and February, the air temperature dropped below zero, with values up to -7.8 °C in 2016. 
On the other hand, the maximum air temperature values were observed in July and August, 
exceeding 35 °C in all years, with the absolute maximum of 37.8 °C, recorded in 2017. 

Table 6. Minimum, mean and maximum air temperature records between 2015-2020 in the 
Greek study area. 

Year 
Air Temperature (C°) 

Minimum Mean Maximum 

2015 -6.4 15.5 35.4 
2016 -7.8 15.8 36.6 
2017 -6.0 15.2 37.8 
2018 -5.0 16.1 35.8 
2019 -6.2 16.2 36.4 
2020 -4.6 16.0 35.6 

 

 

Figure 7. Air temperature annual fluctuations between years 2015-2020. 

The annual cumulative rain depth showed a significant variation among years, from 322 mm 
in 2016 up to 766 mm in 2019 (Table 7; Figure 8). However, rainfall changes between the years 
were abrupt and do not reveal any obvious upward or downward trend. It is worth mentioning 
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that from 2018 to 2020 at least two extreme events were recorded, exceeding 90 mm of rain 
water within a day (Table 5). 

Table 7. Annual cumulative and daily maximum rain records between 2015-2020 in the Greek 
study area. 

Year 
Rain (mm) 

Sum Maximum Daily 

2015 686 66 
2016 322 34 
2017 525 47 
2018 593 100 
2019 766 97 
2020 463 32 

 

 

Figure 8. Annual cumulative rain depth between the years 2015-2020. 

No substantial differences were found in the mean reference evapotranspiration (ETo) values 
from 2015 to 2020, with ETo ranging just 0.09 mm/d from 2.63 to 2.72 mm/d (Table 8; Figure 9). 
However, the annual evaporative atmospheric demands, were found to differ by up to 79 mm 
between 2015 and 2020, indicating that even a subtle increase in daily demands results in a 
remarkable annual increase. As in the case of air temperature, a slight upward trend is observed 
in the evaporative demands of the atmosphere between 2015-2020. 
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Table 8. Annual mean (in mm/day) and total reference evapotranspiration (in mm) between 
2015-2020 in the Greek study area. 

Year 
Reference Evapotranspiration 

Mean (mm/day) Total (mm) 

2015 2.63 857 
2016 2.67 909 
2017 2.66 872 
2018 2.70 931 
2019 2.71 895 
2020 2.72 936 

 

 

Figure 9. Annual reference evapotranspiration (ETo) box charts between 2015-2020. 

2.2 Copernicus Sentinel 2 mission imagery 

The Copernicus Sentinel-2 mission comprises a constellation of two polar-orbiting satellites 
placed in the same sun-synchronous orbit, phased at 180° to each other. It aims at monitoring 
variability in land surface conditions, and its wide swath width (290 km) and high revisit time (10 
days at the equator with one satellite, and 5 days with 2 satellites under cloud-free conditions, 
which results in 2-3 days at mid-latitudes) will support monitoring of Earth’s surface changes. 
Sentinel-2 satellites are on track from 2015 to today and image data files consist of twelve 
spectral bands with maximum resolution of 10 m (Table 9). 
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Table 9. Spectral bands, central wavelengths (nm) and corresponding spatial resolutions (m) of 
Sentinel-2 MSI sensor. 

Bands 
Central wavelength 

(nm) 
Spatial Resolution 

(m) 

Band 1 (Coastal aerosol) 443 60 

Band 2 (Blue) 490 10 

Band 3 (Green) 560 10 

Band 4 (Red) 665 10 

Band 5 (Red Edge 1) 705 20 

Band 6 (Red Edge 2) 740 20 

Band 7 (Red Edge 3) 783 20 

Band 8 (NIR) 842 10 

Band 8A (NIR Vapor) 865 20 

Band 9 (Water Vapor) 945 60 

Band 10 (SWIR-Cirrus) 1375 60 

Band 11 (SWIR-1) 1.610 20 

Band 12 (SWIR-2) 2190 20 

 

The required satellite imagery for this study was acquired via the R programming language, 
and more specifically the sen2r package (Ranghetti et al., 2020). To use the package, users must 
initially create (or already have) an account on Sentinel Scientific Data Hub 
(https://scihub.copernicus.eu/). In brief, through the sen2r user interface, users must initially 
provide their log-in credentials for the Sentinel Scientific Data Hub account and then define the 
borders of the study area, the desired sensing time interval, and the targeted vegetation indices. 
When executed, sen2r connects to the Sentinel Scientific Data Hub, searches for the available 
Level-1C (Top of the Atmosphere) products (for the given area and time), downloads them and 
subsequently process them with the European Space Agency snap toolbox to transform them to 
Level-2A (Bottom of the Atmosphere) products. Finally, it uses the products’ bands to produce 
the targeted vegetation index maps. 

The Sentinel tile that was found to be more suitable for the current work was T35TLF. The 
borders of the tile and the study area are depicted in Figure 10. 

https://scihub.copernicus.eu/
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Figure 10. Sentinel 2 35TLF tile and study area fields. 

In the case of the current study the selected vegetation index was NDVI, defined as the 
difference between the surface reflectance in near infrared and red wavelengths divided by the 
sum of surface reflectance in near infrared and red wavelengths. Thus, sen2r tool calculated NDVI 
using the Sentinel 2 spectral bands 4 (red) and 8 (near infrared) (Table 9) via the equation: 

48

48NIR Ba
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RED B nnd

NIR

a d

RED BaBa d
VI

nnd
D

− −
= =

+ +
  (1) 

NDVI index ranges between -1 to +1. Values lower than zero correspond to areas without any 
green vegetation, such as urban areas, bare rocks, areas covered with snow or waterbodies (e.g., 
oceans, lakes, rivers, etc.). Landscapes with NDVI values ranging from 0 to 0.3 are places with 
green vegetation of lower density, while surfaces with NDVI equal to 0.45 or higher correspond 
to areas occupied by dense to very dense green vegetation (Table 10) (Zaitunah et al., 2018). 
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Table 10. NDVI values for various vegetation cover. 

Class Dense Class NDVI 

1 Non Vegetation < 0 

2 Lowest Dense 0-0.15 

3 Lower Dense 0.15-0.3 

4 Dense 0.3-0.45 

5 Higher Dense 0.45-0.6 

6 Highest Dense > 0.6 

 

The total number of satellite images for the three years was 219, representing approximately 
73 images per year. Initially the maximum allowed cloud cover was set to 0-2% and only 56 
images were found to meet the criterion, resulting in an efficiency level equal to 26% (Table 11). 
The efficiency was slightly higher in 2020 (29%) than 2019 and 2018. When the allowed cloud 
cover was increased to 0-5% and 0-10%, the products that met the threshold increased to 72 and 
87, respectively, thus substantially improving the efficiency level to 33% and 40%, respectively. 
Overall, the satellite images in year 2020 appeared more efficient than those in 2018 and 2019. 

It is noteworthy that between March and June, for all years, a significant number of products 
were found to have a maximum cloud cover, higher than 10%. This is the time when the spring 
arable crops germinate and start to grow rapidly until they reach their maximum canopy cover, 
roughly to mid-June. This fact indicates that prolonged periods of cloud presence at certain 
periods of time may decrease the capacity of satellites to provide reliable services to agriculture. 

Table 11. Sentinel 2 products acquired for the years 2018, 2019 and 2020. 

Year 
Total 

available 

Cloud cover 

0-2% Eff. (%) 0-5% Eff. (%) 0-10% Eff. (%) 

2018 73 19 26.03 22 30.14 25 34.25 

2019 73 16 21.92 23 31.51 29 39.73 

2020 73 21 28.77 27 36.99 33 45.21 

Aggregate 219 56 25.57 72 32.88 87 39.73 

2.2.1 Converting NDVI to CC 

In order to convert the NDVI maps obtained from sen2r to CC maps, empirical equations 
proposed by previous studies were used. For all crops, the relationship between NDVI and CC 
was found to be linear, following the general form y = ax +b. Table 12 presents the equations 
used for each crop. 
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Table 12. Relationship between green canopy cover and NDVI for maize, cotton and rice crops. 

Study Crop Equation 

(Tsakmakis et al., 2021b) Maize 125 23.750CC NDVI=  −  

(Sui et al., 2008) Cotton 0.69 16.52CC NDVI=  +  
(Veerakachen and 
Raksapatcharawong, 2020) 

Rice 1.522 0.2457CC NDVI=  −  

2.3 Irrigation Schedules 

2.3.1 Farmers average irrigation schedules 

To assess the amount of water that was applied typically during the cultivation period to 
maize and cotton crops in the study area, a number of interviews were conducted with farmers 
to better understand their philosophy and irrigation criteria. Based on the analysis of the 
questionnaires, an average irrigation schedule was created for maize and cotton. 

In the case of maize, if no rainfall events occur during late March to early April, farmers 
irrigate after sowing to guarantee a successful germination. Subsequently, they let the maize 
plants grow and start to irrigate from the last week of May until crop maturation. The application 
frequency and amounts for furrow and drip irrigation systems (among the most popular in the 
area) are presented in Table 13. 

Accordingly, if no rainfall events occur in April, farmers irrigate the cotton fields on sowing. 
Then, irrigation may be applied in the first half of June, if there are no rainfall events, but the 
plants are irrigated from late June to the end of August.  

Table 13. Irrigation applications and frequency for the various irrigation systems in the case of maize 
and cotton crops. 

Crop Irri. System 
Amount Applied 
per event (mm) 

Frequency 

Maize Furrow 60 Every 4 days* 

Maize Drip 40 Every 4 days* 

Cotton Furrow 60 Every 5 days** 

Cotton Sprinkler 35 Every 5 days** 

*From late May to maturity 
**From mid-June to maturity 

In the case of rice, the interviews with the farmers did not reveal any measurable data that 
can be used to create average irrigation schedules. In brief, from June to September, farmers 
open the gate barriers of the irrigation canal and let the water flood their fields on an almost 
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daily basis. As long as the irrigated water amounts are not measured, it is almost impossible to 
create any irrigation scenario in the case of rice. 

2.3.2 Optimum irrigation scenarios 

Successively, aiming to obtain the optimum irrigation schedule for each experimental year, 
irrigation generation criteria were created for the targeted crops. For maize, the maximum plant 
available water depletion triggering an irrigation event was set to 50% of the total plant available 
water (TPAW) and the application amount was set equal to the amount required to bring soil 
back to FC (Table 14). 

Table 14. Threshold criteria and application amounts defined for the optimum irrigation generation 
schedules. 

Crop 
Depletion 

(%) 
Application 

Amount (mm) 
Period 

Maize 50 Back to FC End of May to Maturity 

 

2.3.3 National legislation irrigation water quotas evaluation 

Both the farmer average empirical irrigation schedules, as well as the optimum derived 
irrigation schedules were used as means to assess the water quotas defined for the maize, cotton 
and rice crops by the 2nd Update of river basin management plans for the river basin district of 
Thrace (EL12) (Table 15). In brief, the water management plan defines that the maximum net 
water amount that can be applied to maize, cotton and rice equals to 5,562, 3,918 and 10,149 
m3/ha. 

Table 15. Irrigation water quotas per crop in water district EL12 according to the 2nd Update of river 
basin management plans for river basin district (EL12) Thrace. 

Crop Categories 
According to 

Crop Coefficient 
K 

Crops 

Net Total 
Water Quota 

During 
Cultivation 

Period 
(m3/ha) 

Allowed Irrigation Consumption from a 
Groundwell 

MC (m3/ha) via 
a drip irrigation 

system 
PC=85.50% 

MC (m3/ha) 
via a sprinkler 

irrigation 
system 

PC=80.75% 

MC (m3/ha) 
via a furrow 

irrigation 
system 

PC=50.00% 

I 
K=0.55 

Citrus  
Olives  
Vineyards 

4,756 
3,995 
4,756 

5,560 
4,670 
5,560 

  

II Tobacco 3,419  4,230  
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K=0.6 

III 
K=0.65 

Cotton 
Legumes 
Orchards 

3,918 
4,640 
5,208 

 
 

6,090 

4,850 
5,750 

 

IV 
K=0.7 

Sugar beets 
Sunflower 
Vegetables 
Process Tomato 
Potatoes 
Melon fields 

5,656 
5,656 
6,133 
4,511 
4,671 
5,135 

 

7,000 
7,000 
7,590 
5,590 
5,780 
6,360 

 

V 
K=0.75 

Winter Cereals 
Maize 

895 
5,562 

 
1,110 
6,890 

 

VI 
K=0,80 

Constructed 
Grasslands 

3,507  4,340  

VII 
K=0,85 

Alfalfa 7,510  9,300  

VIII 
K=1.2 

Rice 10,149   20,300 

MC=Maximum Consumption; PC=Irrigation System Performance Coefficient 

2.4 AquaCrop Model 

AquaCrop (v 6.1) (Hsiao et al., 2009; Raes et al., 2009) is a crop growth model capable of 
simulating the growing cycle of grains, vegetables, tuber crops, cotton, maize etc. Its’ function is 
partially based on the double crop coefficient concept (Allen et al., 1998), but it also incorporates 
the relatively novel concept of water productivity (WP*) in order to convert the plants’ estimated 
transpiration to accumulative biomass (Steduto et al., 2007). The daily transpiration is calculated 
via the equation: 

*
, 0Cadj S Tr xTr K CC Kc ET=      (2) 

where: KS is the dimensionless soil water stress coefficient (equal to 1 when the soil is at field 
capacity and 0 at permanent wilting point); KcTr,x is the maximum crop transpiration coefficient 
(mm); ET0 is the reference evapotranspiration (mm); and CC* is the canopy cover (%) adjusted 
for micro-advective effects given by the equation: 

* 2 31.72 0.30CC CC CC CC= − +   (3) 

Τhe dB accumulation in calculated in daily basis as: 

*

1 0

n
Cadj

i

Tr
dB WP

ET=

=    (4) 
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where: dB is the accumulated dry aboveground biomass in day after sowing (DAS) n (tn/ha/d); 
and WP* is the crop’s water productivity adjusted for atmospheric CO2 concentration and 
climate (g/m2). 

Finally, the model calculates the crop yield as: 

Yield HI B=    (5) 

where: Y is the crop production (tn/ha); and HI is the harvest index (%). 

A deficit irrigation strategy may substantially enhance the water productivity of cotton 
(Fereres and Soriano, 2007). In AquaCrop this aspect is integrated with three intuitive 
parameters; a) the positive water stress impact on the HI when applied before flowering, b) the 
potentially positive effect of water stress on leaf expansion and in turn on HI during yield 
formation, and b) the potentially adverse effect of water stress induced stomatal closure on HI 
during yield formation. Thus, a decrease in dB production due to a deficit irrigation schedule may 
be compensated by an increase in HI resulting in increased water productivity. 

At the current version 6.1, CC is a model output parameter. Its’ growth and decline pattern 
over the growing cycle is calculated through the adjustment of input parameters a) canopy 
growth coefficient (CGC); b) canopy decline coefficient (CDC); c) maximum canopy cover (CCx); 
and d) GDDs to senescence. In brief, after plants emergence and until CCx/2 is reached, CC is 
calculated daily by the exponential function: 

DAS CGC
oCC CC e =   (6) 

while from CCx/2 to CCx via the equation 

2

0.25 DAS CGCx
x

o

CC
CC CC e

CC
− = −   (7) 

For the time interval between CCx is achieved until the beginning of the senescence stage, 
the CC is considered to remain constant. Then, the CDC was applied and the daily CC decline until 
the end of the season is estimated. A water shortage during CC development may result in limited 
or no CC development, a process simulated by the model through the water stress expansion 
coefficient. Similarly, a severe water shortage in the mid-season may trigger early CC senescence, 
a process estimated by the model through the corresponding senescence water stress 
coefficient. 

The required input data for model execution are (a) a meteorological file; (b) a crop file; (c) a 
soil file; (d) an irrigation file; (e) a field management; (f) a groundwater file; and (g) an initial 
conditions file. In the framework of this work the meteorological, soil and irrigation files for each 
of the study area fields were created according to the collected data, as described in the 
respective subsections. The initial soil water content was considered to be close to FC and thus 
the upper 10 cm soil layer was adjusted to 90% of FC. This decision is justified by the rainfall 
events and the occurrence of low temperature prevailing in the study areas during March and 
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early April. The field management and groundwater files were not used, as the groundwater table 
in all fields was below 40 m depth, whilst no mulching nor bounds were used as typical maize 
cultivation practices. 

2.5 Water Footprint 

According to the definitions and the methodological framework introduced by Hoesktra et al. 
(2011), the green and blue components of crop water requirements (CWR) are calculated by the 
accumulated data on daily crop evapotranspiration ETc (mm/day), over the complete growing 
period, as follows: 

1

10
lp

green green
d

CWR ET
=

=    (8) 

1

10
lp

blue blue
d

CWR ET
=

=    (9) 

where: CWRgreen and CWRblue are the green and blue component of crop water requirements 
(m3/ha), respectively; ETgreen represents the rainwater lost by evapotranspiration (green water) 
(mm/d); and ETblue the irrigated water lost by evapotranspiration (blue water) (mm/d) during the 
cultivation period. The summation is done over the period from the planting day (d=1) to the day 
of harvest (d=lp; lp is the length of growing period in days). 

The ETgreen and ETblue evapotranspiration fractions were estimated in this study in two 
different ways. In the first approach (Hoekstra et al. 2011) the two models were executed initially 
under rainfed conditions. The cumulative ETCadj at the end of the season was considered equal to 
ETgreen. Then, the models were run again under the ten different irrigation management scenarios 
(Table 1). For each scenario the ETblue was calculated as: 

          1, 2,3...,10blue Cadji greenET ET ET i= − =   (10) 

The green component of water footprint for growing a crop (WFcrop,green, m3/tn) is calculated 
as the green component in crop water requirements (CWRgreen, m3/ha) divided by the crop yield 
(Y, tn/ha). Similarly, the blue component of water footprint (WFcrop,blue, m3/tn) is defined as the 
ratio of the blue component in crop water requirements (CWRblue, m3/ha) against crop yield: 

,
green

crop green

CWR
WF

Y
=   (11) 

,blue
blue

crop

CWR
WF

Y
=   (12) 

For the calculations in above equations and in the case of the irrigation management 
scenarios 4, 5, 9 and 10, the experimentally measured seed cotton yield values were utilized, 
while for the rest of the scenarios the corresponding simulated by AquaCrop final seed cotton 
yields were used. 
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The water footprint of the process of growing crops or trees (WFcrop, m3/tn) is the sum of the 
green and blue components: 

, ,crop crop green crop blueWF WF WF= +   (13) 

In a different perspective Chukalla et al. (2015) considered that the total soil water content 
(S) is the sum of a green component (Sg) and a blue component (Sb). The former one originated 
from rainfall water while the latter from irrigated water. Assuming that at the sowing date S has 
a specific composition i.e. 60% Sg and 40% Sb the daily changes in the two components until the 
end of the season are given by the following equations: 

( )Cadj

dSg Sg R
R Dr ET RO

dt S I R
   

= − + −   
+   

  (14) 

( )Cadj

dSb Sb I
I Dr ET RO

dt S I R
   

= − + −   
+   

  (15) 

where: dt is the time step of the calculation (1d); R is the rainfall (mm); I is the irrigation (mm); 
Dr is the deep percolation (mm); and RO is the surface run off (mm). Subsequently, the daily 
ETgreen and ETblue values are calculated as follows:  

green Cadj

Sg
ET ET

S
 

=  
 

  (16) 

blue Cadj

Sb
ET ET

S
 

=  
 

  (17) 

Then the equations (11) and (12) – (13) are used again to estimate the green, blue and total 
cotton water footprint, respectively. 

In the current study, S at the sowing day was assumed to be equal to Sg as all available soil 
water at the beginning of the cultivation season comes from the winter and early spring rainfalls. 
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3 Results and Discussion 

3.1 Variations of soil hydraulic properties 

When the gravel content was set equal to zero and the compaction level to normal, the soil 
data analysis results showed that soil FC mean value was considerably higher for clay loam fields 
(33.18% in average), whilst the lowest mean value (18.77%) was calculated for fields 
characterized as sandy loams (Table 16). The standard deviation for all textural classes exhibited 
very similar values, ranging from 1.93% to 2.78%. Moreover, the largest number of outlier fields, 
meaning that these fields showed FC values outside the box plot whiskers specially to the lower 
end, was observed in the case of sandy loam textural class (Figure 11). Specifically, while the 
mean FC value was found to be roughly 19%, the minimum calculated FC within the textural class 
was just 10%. 

Similarly, the PWP mean value was higher for clay loam fields and lower for sandy loams 
taking values equal to 19.81% and 8.46%, respectively (Table 17). Standard deviation showed 
slightly lower values than those in FC, ranging between 1.61% and 2.17%. Again, the largest 
number of outliers were observed in the case of sandy loam fields, showing minimum value equal 
to just 2.76%. 

Defined as the difference between FC and PWP, the plant available water (paw) was found to 
take larger values for loam and clay loam fields than at the sandy clay loam and sandy loam fields 
(Figure 11). In detail, the mean paw for loams and clay loams was roughly 132 mm of water per 
meter of soil, while this amount was considerably lower in the case of sandy loams and sandy 
clay loams, equal to approximately 100 mm (Table 18). The minimum and maximum paw values 
were estimated for sandy loam and loam fields, equal to 60 mm and 169 mm, respectively. These 
results indicate that the paw values of cultivated fields should be taken into consideration during 
the irrigation scheduling process, especially for the fields that belong to the upper or lower 
extreme cases, as otherwise an irrational use of the available water resources is very likely to 
happen. 
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Figure 11. Variations of fields capacity (FC), permanent wilting point (PWP), plant available water (paw) 
and saturated hydraulic conductivity (Ksat) in the case of Loam (Lo), Sandy Loam (SaLo), ClayLoam (ClLo) 
and Sandy Clay Loam (SaClLo) textural classes. Gravel content = 0; Compaction Level = Normal. 

Saturated hydraulic conductivity analysis showed that clay loam fields are more difficult to 
drain, taking a mean value equal to 126 mm/d, but within the same class fields with Ksat of just 
37 mm/d were also present (Table 19). It is obvious that by applying an excess of water in the 
later fields, runoff of stagnation phenomena is very likely to occur, resulting in a loss of water via 
a nonproductive way (e.g., evaporation). On the other hand, extremely high Ksat values were 
observed in the case of sandy loam fields, larger than 2,000 mm/d. While an application of excess 
water will have the same result as in the case of clay loam fields, an irrational use of water 
resources, however the loss mechanism for sandy loam soils is deep percolation, meaning that 
the applied water infiltrates deeper than plants’ rooting depth and is being lost to groundwater. 
Loams and sandy clay loams showed a moderate drainage ability, showing Ksat mean values 447 
mm/d and 260 mm/d, respectively. 
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Table 16. Statistics of the textural class impact on soil field capacity (%). 

 Lo SaLo SaClLo ClLo 

count 14238 13879 2834 1027 

mean 24.33 18.77 26.52 33.18 

std 2.78 2.25 2.39 1.93 

min 18 10 21 29 

25% 22 18 25 32 

50% 24 19 26 33 

75% 26 20 28 35 

max 34 26 33 38 

Lo=Loam; SaLo=Sandy Loam; ClLo=Clay Loam; SaClLo=Sandy Clay Lom; 
std=Standard Deviation 

Table 17. Statistics of the textural class impact on soil permanent wilting point (PWP) (%). 

 Lo SaLo SaClLo ClLo 

count 14238 13879 2834 1027 

mean 11.14 8.46 15.76 19.81 

std 2.17 1.61 1.82 2.01 

min 6.25 2.76 12.46 16.7 

25% 9.56 7.5 14.34 18.18 

50% 10.56 8.39 15.61 19.23 

75% 12.42 9.27 16.72 21.3 

max 17.81 14.19 21.58 24.83 

Lo=Loam; SaLo=Sandy Loam; ClLo=Clay Loam; SaClLo=Sandy Clay Lom; 
std=Standard Deviation 

Table 18. Statistics of the textural class impact on soil plant available water (mm). 

 Lo SaLo SaClLo ClLo 

count 14238 13879 2834 1027 

mean 131.84 103.17 107.64 133.81 

std 10.56 11.16 8.73 9.95 

min 112 60 80 118 

25% 123 97 101 126 

50% 130 106 108 131 

75% 139 112 115 140 

max 169 124 125 163 

Lo=Loam; SaLo=Sandy Loam; ClLo=Clay Loam; SaClLo=Sandy Clay Lom 
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Table 19. Statistics of the textural class impact on saturated hydraulic conductivity (mm/d). 

 Lo SaLo SaClLo ClLo 

count 14238 13879 2834 1027 

mean 446.76 760.05 259.11 125.57 

std 127.66 210.95 80.91 43.54 

min 142.41 323.38 63.56 36.59 

25% 350.84 628.07 208.29 88.86 

50% 450.54 721.72 260.26 132 

75% 539.1 854.3 316.08 160.74 

max 932.73 2066.96 539.04 264.05 

Lo=Loam; SaLo=Sandy Loam; ClLo=Clay Loam; SaClLo=Sandy Clay Lom 

 

3.1.1 Impact of gravel content on plant available water 

The parameters that are affected by the presence of gravels within the soil matrix are paw 
and Ksat. Increased gravel content reduces the number of the available pores and thus the volume 
that water can occupy per soil unit (e.g., water cm3 / soil cm3). As a result, the presence of gravels 
decreases the amount of water that a soil could withhold and thus the total paw. It should be 
mentioned that the FC and PWP parameters values are independent of gravel content and their 
values remain the same. 

For all textural classes, the paw is reduced as the gravel content appears increased (Figure 
12). The impact of gravels was found to be more profound in the case of clay loam and sandy clay 
loam textural classes. For these classes an increase of gravel content from 0% to 30%, resulted in 
a paw decrease equal to 25-28 mm of water, a reduction that corresponds to a decrease of 
roughly 20-23% (Tables 22, 23). On the other hand, in the case of loam and sandy loam the 
observed decrease was found to be moderately less fluctuating between 16-18% (16 -23 mm) 
(Table 20, 21). 

In the extreme scenario of a soil with a gravel content equal to 60% loam and clay loam soil, 
a decrease in paw up to 60 mm of water was shown, whilst in the case of sandy loam and sandy 
clay loam fields this amount was considerably lower, equal to 50 mm. Overall, a gravel content 
equal to 60%, results in a paw reduction larger than 40% to all textural classes. 
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Figure 12. Impact of gravel content on plant available water for loam, sandy loam, sandy clay loam and 
clay loam textural classes. 

Table 20. Statistics of the gravel content impact on total plant available water (mm) in the case of 
Loam textural class. 

 0 10 20 30 40 50 60 

count 14238 14238 14238 14238 14238 14238 14238 

mean 131.84 124.02 115.45 106.03 95.63 84.09 71.2 

std 10.56 10.08 9.54 8.93 8.21 7.39 6.41 

min 112 105 97 89 80 70 59 

25% 123 116 108 99 89 78 66 

50% 130 122 114 104 94 83 70 

75% 139 131 122 112 101 89 75 

max 169 161 151 140 128 114 98 
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Table 21. Statistics of the gravel content impact on total plant available water (mm) in the case of 
Sandy Loam textural class. 

 0 10 20 30 40 50 60 

count 13879 13879 13879 13879 13879 13879 13879 

mean 103.17 96.88 90.01 82.5 74.23 65.1 54.96 

std 11.16 10.51 9.79 9 8.13 7.17 6.09 

min 60 56 52 48 43 38 32 

25% 97 91 84 77 70 61 51 

50% 106 99 92 84 76 67 56 

75% 112 105 97 89 80 71 60 

max 124 117 109 101 91 81 69 

Table 22. Statistics of the gravel content impact on total plant available water (mm) in the case of 
Sandy Clay Loam textural class. 

 0 10 20 30 40 50 60 

count 2834 2834 2834 2834 2834 2834 2834 

mean 107.64 101.19 94.14 86.42 77.89 68.44 57.89 

std 8.73 8.29 7.79 7.23 6.6 5.88 5.06 

min 80 75 69 63 57 50 42 

25% 101 95 89 81 73 64 54 

50% 108 101 94 87 78 69 58 

75% 115 108 101 93 83 73 62 

max 125 117 109 101 91 80 68 

Table 23. Statistics of the gravel content impact on total plant available water (mm) in the case of Clay 
Loam textural class. 

 0 10 20 30 40 50 60 

count 1027 1027 1027 1027 1027 1027 1027 

mean 133.81 126.2 117.84 108.57 98.28 86.78 73.81 

std 9.95 9.55 9.09 8.55 7.91 7.19 6.27 

min 118 111 103 95 86 76 64 

25% 126 118 110 102 92 81 69 

50% 131 124 116 106 96 85 72 

75% 140 132 124 114 103 91 78 

max 163 154 145 134 122 109 94 

 



 

34 

3.1.2 Impact of gravel content to saturated hydraulic conductivity (Ksat) 

As in the case of the paw, the presence of gravels within the soil matrix decreases the 
available water infiltrate paths and thus results in the decrease of Ksat. For all the textural classes 
an increase of gravel content to 10%, 20%, 30%, 40%, 50% and 60% resulted in a Ksat decrease 
equal to approximately 8.5%, 9.5%, 10.5%, 12%, 13.6% and 16%, respectively (Figure 13). In terms 
of absolute numbers, the largest decrease was observed in the sandy loam fields in which the Ksat 
mean value plummeted from 760 mm/d in the case of 0% gravel content to 328 mm/d in 60% 
gravel content scenario, a decrease equal to 432 mm/d (Table 25). Despite this significant 
decrease, the Ksat of sandy clay soils remains remarkably high (even with the 60% gravel content), 
allowing them to infiltrate almost 14 mm of water per hour. Accordingly, loam fields maintain 
the ability to infiltrate large amounts of water (> 10 mm/hr) for gravel content values up to 50%, 
whilst at 60% their Ksat was found to marginally fall below 10 mm/hr. 

On the contrary, in the case of clay loam fields, every 10% increase in the gravel content 
resulted in an approximate decrease of 0.5mm/hr in the already low Ksat mean value of 5 mm/hr 
at 0% gravel content. Ultimately, at 60% gravel content, these fields showed a Ksat of roughly 2 
mm/hr (Table 27). 

Sandy clay loam fields mean Ksat showed values lower than 10 mm/hr with just a 10% increase 
in gravel content (Table 26), resulting in 9.85 mm/hr and 7.89 mm/hr at 10% and 30% gravel 
content, respectively. 

Overall, the statistical analysis showed that the presence of gravel content on clay loam and 
sandy clay loam fields affects even more the already challenging irrigation scheduling task in 
these fields. In detail, an irrigation schedule of frequent and small applications of water seems to 
be the ideal pattern, with the application amount being reduced as the gravel content increases. 
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Figure 13. Impact of gravel content on saturated hydraulic conductivity (Ksat) for loam, sandy loam, sandy 
clay loam and clay loam textural classes. 

Table 24. Statistics of the gravel content impact on saturated hydraulic conductivity in the case of 
Loam textural class. 

 0 10 20 30 40 50 60 

count 14238 14238 14238 14238 14238 14238 14238 

mean 446.76 407.98 368.04 326.9 284.5 240.78 195.68 

std 127.66 116.37 104.8 92.92 80.73 68.2 55.34 

min 142.41 130.36 117.89 104.98 91.6 77.73 63.35 

25% 350.84 320.62 289.47 257.46 224.31 190 154.63 

50% 450.54 411.28 370.98 329.45 286.64 242.44 196.91 

75% 539.1 492.12 443.66 393.78 342.46 289.59 235.18 

max 932.73 853.47 771.53 686.75 598.99 508.09 413.88 

 



 

36 

Table 25. Statistics of the gravel content impact on saturated hydraulic conductivity in the case of 
Sandy Loam textural class. 

 0 10 20 30 40 50 60 

count 13879 13879 13879 13879 13879 13879 13879 

mean 760.05 692.5 623.26 552.27 479.46 404.75 328.07 

std 210.95 192.14 172.88 153.15 132.93 112.19 90.92 

min 323.38 294.31 264.59 234.18 203.06 171.21 138.6 

25% 628.07 572.4 514.83 456.07 395.77 334.02 270.73 

50% 721.72 657.69 592 524.79 455.56 384.63 311.78 

75% 854.3 778.64 700.99 621.08 539 454.94 368.63 

max 2066.96 1884.78 1697.73 1505.62 1308.24 1105.37 896.77 

Table 26. Statistics of the gravel content impact on saturated hydraulic conductivity in the case of 
Sandy Clay Loam textural class. 

 0 10 20 30 40 50 60 

count 2834 2834 2834 2834 2834 2834 2834 

mean 259.11 236.48 213.2 189.25 164.6 139.22 113.06 

std 80.91 73.78 66.46 58.95 51.23 43.29 35.13 

min 63.56 57.97 52.22 46.32 40.25 34.01 27.6 

25% 208.29 189.97 171.29 152.14 132.49 112.12 91.15 

50% 260.26 237.55 214.11 190.12 165.32 139.95 113.65 

75% 316.08 287.94 259.88 230.66 200.54 169.83 137.85 

max 539.04 494.31 447.85 399.57 349.36 297.09 242.63 

Table 27. Statistics of the gravel content impact on saturated hydraulic conductivity in the case of Clay 
Loam textural class. 

 0 10 20 30 40 50 60 

count 1027 1027 1027 1027 1027 1027 1027 

mean 125.57 115.17 104.36 93.13 81.44 69.27 56.59 

std 43.54 40.03 36.36 32.53 28.52 24.33 19.94 

min 36.59 33.51 30.31 27 23.56 20 16.31 

25% 88.86 81.38 73.66 65.78 57.57 49.05 40.17 

50% 132 120.99 109.27 97.44 85.18 72.31 58.98 

75% 160.74 147.36 133.66 119.26 104.3 88.74 72.5 

max 264.05 243.99 222.83 200.48 176.83 151.76 125.15 
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3.1.3 Impact of field compaction on plant available water 

Soil compaction occurs when soil particles are pressed together, reducing pore size between 
them. Specifically, compaction decreases the field’s FC but leaves unaffected the PWP. As a 
result, the soil capability to withhold water is decreased, ultimately reducing the paw level (Figure 
14). 

The results showed that from normal to dense compaction level the paw was reduced 8.64%, 
11.35%, 10.76% and 8.12% for loam, sandy loam, sandy clay loam and clay loam classes, 
respectively, while in the case of severe compaction level these percentages were found to be 
equal to 25.90%, 34.03%, 31.97% and 24.36%. 

 

Figure 14. Impact of soil compaction level on plant available water for loam, sandy loam, sandy clay loam 
and clay loam textural classes. 

In terms of paw (in mm) of water, all soil classes were gaining roughly 10 to 11 mm of water, 
when moving from normal towards the loose soil compaction level. On the other hand, from 
normal to dense, all four classes lost approximately 10 mm and then again, another 10 mm to 
hard and severe compaction levels, losing in total roughly 34 mm of water (Tables 28, 29, 30, 31). 
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Analysis results indicated that soil compaction is a factor that if not measured, increases the 
uncertainty of water balance model calculations, as it directly affects the soil maximum water 
holding capacity and thus paw, altering the optimum irrigation scheduling schema (both 
frequency and application amount). 

Table 28. Statistics of the soil compaction level impact on plant available water in the case of Loam 
textural class. 

 loose normal dense hard severe 

count 14238 14238 14238 14238 14238 

mean 143.23 131.84 120.47 109.09 97.7 

std 10.35 10.56 10.78 11 11.23 

min 123 112 100 88 76 

25% 135 123 112 100 89 

50% 142 130 119 107 96 

75% 150.75 139 128 117 105 

max 179 169 160 150 140 

Table 29. Statistics of the soil compaction level impact on plant available water in the case of Sandy 
Loam textural class. 

 loose normal dense hard severe 

count 13879 13879 13879 13879 13879 

mean 114.88 103.17 91.47 79.77 68.06 

std 11.11 11.16 11.22 11.28 11.34 

min 72 60 48 36 24 

25% 108 97 85 73 62 

50% 117 106 94 82 70 

75% 123 112 100 88 77 

max 135 124 113 103 92 
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Table 30. Statistics of the soil compaction level impact on plant available water in the case of Sandy 
Clay Loam textural class. 

 loose normal dense hard severe 

count 2834 2834 2834 2834 2834 

mean 119.1 107.64 96.16 84.69 73.23 

std 8.57 8.73 8.88 9.04 9.19 

min 92 80 68 56 44 

25% 113 101 90 78 67 

50% 120 108 96 85 74 

75% 126 115 104 92 81 

max 136 125 113 102 91 

Table 31. Statistics of the soil compaction level impact on plant available water in the case of Clay 
Loam textural class. 

 loose normal dense hard severe 

count 1027 1027 1027 1027 1027 

mean 144.68 133.81 122.95 112.08 101.21 

std 9.72 9.95 10.19 10.43 10.68 

min 129 118 107 96 84 

25% 137 126 115 104 93 

50% 142 131 120 109 99 

75% 151 140 130 119 108 

max 173 163 153 143 133 

3.1.4 Impact of field compaction on saturated hydraulic conductivity (Ksat) 

Beyond FC and subsequently paw, compaction affects Ksat (Figure 15). It is remarkable that 
loam, sandy clay loam and clay loam fields under severe compaction level can even be 
impenetrable (Ksat = 0 mm/d) (Tables 32, 34, 35). Clay loam and sandy clay loam fields with a 
compaction level hard or higher, cannot be cultivated, as their mean Ksat values 25 mm/d (1 
mm/hr) and 6 mm/day (0.24 mm/d) renders their irrigation problematic. Similarly, loam fields 
with a severe compaction level do now allow sufficient water to infiltrate through their pores for 
irrigation purposes (Ksat = 0.6 mm/d), while targeted irrigation schedules (very low application 
rate) must be implemented in the case of hard compaction levels. 

Despite the significant decrease in the mean Ksat value from normal to severe compaction 
level (roughly 93%), sandy loam fields can still allow up to 50 mm/d to infiltrate through their 
matrix under this adverse state (Table 33). 
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Overall, the lack of data regarding the field compaction level may lead to significant water 
balance miscalculations, specifically in the case of loam, sandy clay loam and clay loam fields, 
leading to false estimations and results. 

 

Figure 15. Impact of soil compaction level on saturated hydraulic conductivity for loam, sandy loam, sandy 
clay loam and clay loam textural classes. 

Table 32. Statistics of the soil compaction level impact on saturated hydraulic conductivity (mm/d) in 
the case of Loam textural class. 

 loose normal dense hard severe 

count 14238 14238 14238 14238 14221 

mean 826.29 446.76 204.34 70.27 13.53 

std 198.13 127.66 73.6 35.11 11.38 

min 331.43 142.41 42.12 4.88 0 

25% 679.75 350.84 148.31 43.06 4.73 

50% 837.89 450.54 203.48 67.41 11.03 

75% 973.66 539.1 255.5 93.21 19.46 

max 1513.42 932.73 518.6 246.64 90.55 
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Table 33. Statistics of the soil compaction level impact on saturated hydraulic conductivity (mm/d) in 
the case of Sandy Loam textural class. 

 loose normal dense hard severe 

count 13879 13879 13879 13879 13879 

mean 1299.69 760.05 392.67 167.3 50.94 

std 301.13 210.95 136.52 78.37 36.73 

min 654.06 323.38 127.18 31.97 2.15 

25% 1113.01 628.07 306.4 117.28 27.75 

50% 1247.46 721.72 365.75 149.94 41.13 

75% 1437.84 854.3 450.7 197.73 62.48 

max 3075.81 2066.96 1292.8 731.61 356.87 

Table 34. Statistics of the soil compaction level impact on saturated hydraulic conductivity (mm/d) in 
the case of Sandy Clay Loam textural class. 

 loose normal dense hard severe 

count 2834 2834 2834 2834 2497 

mean 532.65 259.11 100.01 24.99 2.47 

std 134.45 80.91 41.44 15.62 3 

min 190.73 63.56 10.77 0.06 0 

25% 449.54 208.29 72.71 13.73 0.59 

50% 538.06 260.26 99.03 23.3 1.43 

75% 628.8 316.08 128.36 34.5 3.42 

max 934.81 539.04 273.3 112.85 31.82 

Table 35. Statistics of the soil compaction level impact on saturated hydraulic conductivity (mm/d) in 
the case of Clay Loam textural class. 

 loose normal dense hard severe 

count 1027 1027 1027 1021 445 

mean 293.6 125.57 38.32 5.66 0.22 

std 77.03 43.54 19.52 5.22 0.62 

min 125.37 36.59 4.22 0 0 

25% 231.04 88.86 22.06 1.36 0 

50% 308.24 132 38.99 4.67 0.05 

75% 357.2 160.74 53.6 8.92 0.15 

max 496.54 264.05 117.43 37.92 5.79 
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3.2 Satellite imagery NDVI data 

3.2.1 Maize NDVI data 

The development of the NDVI index and its distribution over the Nestos Delta fields, 
throughout the 2018, 2019 and 2020 cultivation seasons for maize crop is illustrated in Figures 
16, 17 and 18, respectively. The maize seeds were sowed between March 20, 2018 to April 15, 
2018 in the study area, and they usually germinate within 10 – 15 days from sowing. The plants 
grow slowly till mid-May and then their canopy grows rapidly to reach its maximum CC until June 
15, 2018. From June 15, 2018 till August 10, 2018, the wealthy, adequately irrigated maize plants 
show NDVI values higher than 0.75. 

In 2019 and 2020, when maize seeds were sowed in the first week of April, NDVI values 
remained lower than 0.4 in all fields till mid-May. This was due to the fact that the maize plants 
have just germinated, and their CC-values were very low. From May 15, 2019 and onwards, NDVI 
started to increase rapidly, showing on average values higher than 0.7 during June, July and 
August. In September, when the plants have been harvested, the NDVI values dropped again 
below 0.5. 

It is noteworthy that in 2018, when the maize seeds were sowed on March 20, NDVI values 
close to 0.5 were observed from late April. Again, high NDVI values (> 0.7) were monitored during 
June and July, but in August the average NDVI was found to be moderately lower (< 0.6) than 
that of years 2019 and 2020 (~ 0.7), probably due to the fact that the plants sowed earlier and 
thus they reached maturation earlier this year. 

Despite the general trend that was observed in the majority of fields throughout the studied 
period, there were cases in which the NDVI value of certain fields did not follow the general trend. 
For instance, there were fields with NDVI values lower than the mean, during the whole 
cultivation season, or in some specific development stage. It is hard to say if these low values are 
attributed to problematic irrigation, poor fertilization, pests’ infection or some other reason, but 
it is clear that plants on these fields experienced stress, and thus their final yield will not be 
optimum. 

One of the key growing stages with low NDVI values resulting in decreased maize yields is 
July, the period of maize kernel formation. Figure 19 shows the number of fields experiencing 
stress, i,e., exhibiting NDVI values lower than 0.7 on July 15, July 25 and July 14 in 2018, 2019 and 
2020, respectively. Specifically, on July 15, 2018, 1,065 fields out of 8,254 (roughly 12.9%) were 
found to show NDVI values lower than 0.7. The number of stressed fields was considerably lower 
in 2019; they were equal to 706 out of 8,045 (8.76%), but increased again moderately in 2020, to 
reach 987 stressed fields out of 7.336 (13.5%). 
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Figure 16. NDVI development through 2018 cultivation season for maize crop. 
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Figure 17. NDVI development through 2019 cultivation season for maize crop. 



 

45 

 

Figure 18. NDVI development through 2020 cultivation season for maize crop. 
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Figure 19. Histograms of maize crop NDVI on 15/7/2018, 25/7/2019 and 14/7/2020. 



 

47 

3.2.2 Maize NDVI characteristic curves 

In order to obtain the pattern of the NDVI development for maize crop within the study area, 
a polynomial model was fitted to the mean NDVI values (the average NDVI of all the fields for a 
given date) obtained from all the available NDVI maps that were derived from Sentinel 2 products 
for each of the three years (Table 36, Figure 20). To do that the following polynomial function 
was used: 

3 2 interceptNDVI ax bx cx= + + +   (18) 

where x was the day of year. 

The analysis showed that the model described the maize NDVI development with adequate 
precision when the data of each year were processed separately. Multiple R2 and adjusted R2 
were found to be equal to or higher than 0.95 (Table 36), whilst residual error fluctuated between 
-0.1 and 0.1 (Figure 20). 

Similarly good results were obtained when the data of all years were aggregated and 
processed together. Again, multiple R2 and adjusted R2 reached satisfactory values (0.95 both), 
while residual error range stayed almost the same taking values from -0.12 to 0.1. 

It is noteworthy that the estimated errors for the polynomial model coefficients were 
considerably y low for all cases, showing values that ranged from ±0.01 to ±0.05 (Table 37). 

Table 36. Regression analysis results on NDVI values during the maize growing cycle in 2018, 2019 and 
2020. Fitting model f(x) = ax3+bx2+x+intercept 

Year a b c intercept 
Multiple 

R2 

Adj. 
R2 

2018 0.35±0.03 -0.54±0.03 -0.09±0.03 0.57±0.01 0.99 0.98 

2019 0.77±0.05 -0.49±0.05 -0.34±0.05 0.51±0.01 0.96 0.95 

2020 0.56±0.05 -0.46±0.05 -0.15±0.05 0.66±0.01 0.95 0.94 

Agg. 1.05±0.05 -0.90±0.05 -0.41±0.05 0.57±0.01 0.95 0.95 
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Figure 20. Mean NDVI values and fitting curves for (a) 2018; (c) 2019; (e) 2020; (g) all the years. Residuals 
between the observed and simulated NDVI values for (b) 2018; (d) 2019; (f) 2020; (h) all the years. 
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3.2.3 Rice NDVI data 

The development of NDVI index throughout the 2018, 2019 and 2020 cultivation seasons for 
rice crop are illustrated in Figures 21, 22 and 23, respectively. The rice seeds were usually sowed 
in the first week of May within the study area, and they germinate within 5 - 10 days from sowing. 
The sowing density was so dense that even right after emergence, the young rice plants cover a 
moderate part of the field. As a result, even since late May the rice fields NDVI values were above 
0.6 (Figure 21, 22). 

For all years the NDVI values were found to be considerably high (> 0.8) during June, July, 
August, and early September and then started to gradually decline as the crop reaches maturity. 

Despite the general trend that was observed in the majority of the fields for all years, there 
were cases in which the fields received NDVI values that did not follow the general trend. For 
instance, there were fields in which their NDVI values were lower than the mean during the whole 
cultivation season or in some specific development stage. It is difficult to report whether these 
low values were attributed to poor irrigation and fertilization, pests’ infection, canopy damage 
from hail storms or some other reason, but it is rather clear that plants in these fields experience 
stress, and thus their final yield will not be optimum. 

One of the key growing stages that low NDVI values could lead to a potential decrease in rice 
yield is July, during which rice seed formation is happening. Figure 24 shows the number of fields 
experiencing stress, i.e., have NDVI values lower than 0.8 on July 15, July 25 and July 14 in 2018, 
2019 and 2020, respectively. Specifically, on July 15, 2018, approximately 87 fields out of 924 
(roughly 9.4%) were found to exhibit NDVI values lower than 0.8. The number of stressed fields 
was considerably lower in 2019, equal to 39 out of 664 (approximately 5.9%), but increased again 
substantially in 2020 to reach 141 stressed fields out of 715 (around 19.7%). 
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Figure 21. NDVI development through 2018 cultivation season for rice crop. 
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Figure 22. NDVI development through 2019 cultivation season for rice crop. 
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Figure 23. NDVI development through 2020 cultivation season for rice crop. 
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Figure 24. Histograms of rice crop NDVI on 15/7/2018, 25/7/2019 and 14/7/2020. 
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3.2.4 Rice NDVI characteristic curves 

In order to obtain the pattern of the NDVI development for rice crop within the study area, 
the Eq. (1) implemented in sub-section 3.2.2 “Maize NDVI characteristic curves” was used. Data 
obtained from all the available NDVI maps that were derived from Sentinel 2 products for each 
of the three years were used for the analysis. 

The analysis showed that the model can potentially predict the rice NDVI development with 
adequate precision, when the data of each year were processed separately. Multiple R2 and 
adjusted R2 were found to be equal to or higher than 0.95 (Table 37). For 2018 residual error was 
found to be very similar to that of maize taking values that ranged between -0.1 and 0.1, whilst 
for 2019 and 2020 residual error was considerably higher fluctuating between -0.2 and 0.1 (Figure 
25). 

As in the case of maize, fairly good results were obtained when the data of all years were 
aggregated and processed together, as well. Again, Multiple R2 and adjusted R2 obtained 
satisfactory values (0.95 both), while the residual error range remained almost the same with 
values from -0.2 to 0.11. 

The estimated errors for the polynomial model coefficients were found to be remarkably low 
for the rice crop and for all the cases, showing values that ranged from ±0.01 to ±0.04 (Table 22). 

Table 37. Regression analysis results on NDVI values during cotton growing cycle in 2018, 2019 and 
2020. Fitting model f(x) = ax3+bx2+x+intercept 

Year a b c intercept 
Multiple 

R2 

Adj. 
R2 

2018 0.62±0.02 0.06±0.02 -0.16±0.02 0.51±0.01 0.99 0.99 

2019 0.85±0.04 0.20±0.04 -0.20±0.04 0.41±0.01 0.97 0.97 

2020 0.55±0.02 0.08±0.02 -0.11±0.02 0.45±0.00 0.99 0.99 

Agg. 1.20±0.04 0.24±0.04 -0.25±0.04 0.45±0.01 0.96 0.96 

 



 

55 

 

Figure 25. Mean NDVI values and fitting curves for rice crop for (a) 2018; (c) 2019; (e) 2020; (g) all the 
years. Residuals between the observed and simulated NDVI values for (b) 2018; (d) 2019; (f) 2020; (h) all 
the years. 
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3.2.5 Cotton NDVI data 

Cotton seeds were planted in the study area during the first ten days of May and ideally 
germinate in about 10-15 days. The development of the NDVI index throughout the 2018, 2019 
and 2020 cultivation seasons for cotton are illustrated in Figures 26, 27 and 28, respectively. As 
a result, in 2018 and 2019 the NDVI values during April and May were found to be around 0.3 or 
lower. However, in April 2020 the NDVI values showed values close to 0.5. This can be attributed 
to the existence of weeds within the fields or to an error during the Sentinel 2 image processing 
and conversion to NDVI via the sen2r tool (sub-section 2.2 “Copernicus Sentinel 2 mission 
imagery”). 

During June and July, the cotton plants’ canopy developed rapidly, reaching its maximum 
value of 0.75 in 2018 and 2019. The mean maximum value was found to be moderately lower in 
2020, being equal to 0.7. This lower maximum indicates that due to the 2020 weather conditions, 
the cotton plants failed to reach their optimum development. 

As in the case of maize and rice, all the cotton fields did not follow the general trend that was 
observed in most fields for all years. By closely observing Figures 26 to 28 it is obvious that there 
were fields in which the NDVI did not exceed 0.5 even in August. 

In a similar manner to maize and rice cases, the cause of these low NDVI values seems difficult 
to be diagnosed as it may be attributed to excessive irrigation, poor fertilization, pests’ infection, 
canopy damage from hail storms or some other reason. However, it is certain that plants in these 
fields experienced stress, and thus their final yield was not optimum. 

The cotton NDVI-values in August serve as a good indicator to assess a potential decrease in 
the final crop yield. Figure 29 shows the number of fields that experienced stress, exhibiting NDVI 
values lower than 0.65 on August 19, August 24 and August 18 in 2018, 2019 and 2020, 
respectively. In detail, on August 19, 2018, 292 fields out of 1,567 (roughly 18.6%) were found to 
exhibit NDVI values lower than 0.8. The number of stressed fields was considerably lower in 2019, 
being equal to 419 out of 1,994 (18.3%), but increased again significantly in 2020 to reach 543 
stressed fields out of 715 (27.2%). It worth mentioning that the cotton fields which experience 
stress conditions when compared to maize and rice fields are at least three times higher for all 
years. 
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Figure 26. NDVI development through 2018 cultivation season for cotton crop. 



 

58 

 

Figure 27. NDVI development through 2019 cultivation season for cotton crop. 
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Figure 28. NDVI development through 2020 cultivation season for cotton crop. 
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Figure 29. Histograms of cotton crop NDVI on 18/9/2018, 24/8/2019 and 18/8/2020. 
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3.2.6 Cotton NDVI characteristic curves 

The cotton NDVI development curve was obtained using the Eq. (1) implemented in sub-
section 3.2.2 “Maize NDVI characteristic curves” was used. Data obtained from all the available 
NDVI maps that were derived from Sentinel 2 products for each of the three years were used for 
the analysis. 

The analysis showed that the model described the cotton NDVI development with adequate 
precision when the data of each year were processed separately. Multiple R2 and adjusted R2 
were found to be equal to or higher than 0.96 (Table 38), whilst residual error fluctuated between 
-0.1 and 0.1 (Figure 30). 

Similarly good results were obtained when the data of all years were aggregated and 
processed together. Again, Multiple R2 and adjusted R2 reached satisfactory values (0.96 both), 
while residual error range stayed almost the same taking values from -0.08 to 0.1. 

It is noteworthy that the estimated errors for the polynomial model coefficients were 
considerably low for all cases, showing values that ranged from ±0.01 to ±0.04 (Table 38). 

Table 38. Regression analysis results on NDVI values during cotton growing cycle in 2018, 2019 and 
2020. Fitting model f(x) = ax3+bx2+x+intercept 

Year a b c intercept 
Multiple 

R2 

Adj. 
R2 

2018 0.62±0.02 0.06±0.02 -0.16±0.02 0.51±0.01 0.99 0.99 

2019 0.85±0.04 0.20±0.04 -0.20±0.04 0.41±0.01 0.97 0.97 

2020 0.55±0.02 0.08±0.02 -0.11±0.02 0.45±0.00 0.99 0.99 

Agg. 1.20±0.04 0.24±0.04 -0.25±0.04 0.45±0.01 0.96 0.96 
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Figure 30. NDVI mean values and fitting curves for cotton crop for (a) 2018; (c) 2019; (e) 2020; (g) all the 
years. Residuals between the observed and simulated NDVI values for (b) 2018; (d) 2019; (f) 2020; (h) all 
the years. 
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3.2.7 Maize WF 

To access the impact of soil hydraulic properties variations (as those analyzed in detail in the 
sub-section 3.1 “Variations of soil hydraulic properties”) on WF values, three soil files created and 
used in AquaCrop model. For the creation of the first file, named ‘low”, we used the lowest FC 
and PWP values within each class. Accordingly, the second file, named “mean”, integrated the 
mean FC and PWP values, while the third one, “max”, the corresponding maximum values. The 
textural classes that were used for the case of maize were loam, sandy loam and sandy clay loam, 
as in the clay loam fields farmers tend to cultivate cotton as the crop maps revealed. 

Still in 2018, the results showed that, when the farmer empirical irrigation scheduling was 
used, the WF values ranged between 279.2 to 318.5 m3/t (Table 39, Figure 31). It is worth 
mentioning that in average, the lowest WF values were observed in the case of sandy loam 
textural class (259-290 m3/t). On the other hand, loams exhibited the highest WF values. For all 
the textural classes the green WF component represented roughly 34-41% of the total, whilst 
blue WF ~58-65%. 

When the WF obtained by the implementation of the empirical irrigated fields was compared 
to the one derived from the implementation of the optimum irrigation scenario, it is revealed 
that farmer irrigation performance can be considerably improved. In detail, WF under the 
optimum irrigation scenario did not exceed the 260 m3/t for all the textural classes (Table 39). 
Moreover, the contribution of green WF component found to be slightly higher than the 
empirical case ranging from 39% to 41%. It should be noted that, the optimal total WF was 43%, 
53%, 64%, 4%, 26%, 23%, 19%, 32% and 27% for loam low, loam mean, loam max, sandy loam 
low, sandy loam mean, sandy loam max, sandy clay loam low, sandy clay loam mean and sandy 
clay loam max scenarios, respectively. 

Table 39. Descriptive WF data for empirical and optimal irrigated maize fields in 2018. 

 Empirical Optimal 

 WF_green WF_blue WF WF_green WF_blue WF 

Lo low 101.6 195.6 297.2 104.3 150.0 254.3 

Lo mean 116.0 192.0 308.0 112.6 142.2 254.8 

Lo max 131.8 186.7 318.5 112.6 142.2 254.8 

SaLo low 76.7 183.2 259.9 82.4 173.2 255.6 

SaLo lean 99.4 183.0 282.4 101.7 154.4 256.1 

SaLo lax 111.9 179.1 291.0 115.2 153.1 268.3 

SaClLo low 101.6 177.6 279.2 106.2 154.5 260.7 

SaClLo mean 113.2 176.8 290.0 112.0 146.1 258.0 

SaClLo max 122.2 170.2 292.4 121.6 144.1 265.7 

Lo=loam; SaLo=sandy loam; SaClLo = sandy clay loam 
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Figure 31. Green and Blue maize WF when implemented a farmer empirical irrigation in 2018 for loam, 
sandy loam, and sandy clay loam soils. Lo_l=Loam low end variations; Lo_m=Loam mean variation; 
L_ma=Loam up end variatons; SaLo_l=Sandy Loam low end variations; SaLo_m=Sandy Loam mean 
variation; SaLo_ma=Sandy Loam up end variations; SaClLo_l=Sandy Clay Loam low end variations; 
SaClLo_m=Sandy Clay Loam mean variation; SaClLo_ma=Sandy Clay Loam up end variations. 

 

Figure 32. Green and Blue maize when implemented an optimized irrigation in 2018 for loam, sandy loam, 
and sandy clay loam soils. Lo_l=Loam low end variations; Lo_m=Loam mean variation; L_ma=Loam up end 
variatons; SaLo_l=Sandy Loam low end variations; SaLo_m=Sandy Loam mean variation; SaLo_ma=Sandy 
Loam up end variations; SaClLo_l=Sandy Clay Loam low end variations; SaClLo_m=Sandy Clay Loam mean 
variation; SaClLo_ma=Sandy Clay Loam up end variations. 
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In 2109, the total WF found to be lower that of 2018, taking its’ maximum value of 278 m3/t 
in the case of loam max scenario (Table 40). Again, the lower WF values, in average, were 
observed for sandy loam fields (Figure 33). This year, the green WF component contribution was 
slightly lower than 2018, fluctuating from 28% to 39%, and thus the blue WF component showed 
contribution values up to 72%. 

In the case of the implementation of optimal irrigation scenario in 2019, the maximum total 
WF was observed of the loam max scenario similarly to the empirical irrigation (Table 40), but it 
was approximately 8% lower (262 m3/t) than the corresponding empirical one. In general, the 
total WF values derived under the optimum irrigation scenario were found to be 7-10% lower 
than the corresponding empirical ones. It is noteworthy, that excluding all lower values, the 
optimum irrigation scenario showed less deviation among the different textural classes and a 
more consistent performance overall (Figure 34). 

Table 40. Descriptive WF data for empirical and optimal irrigated maize fields in 2019. 

 Empirical Optimal 

 WF_green WF_blue WF WF_green WF_blue WF 

Lo low 89.7 180.0 269.7 111.6 145.3 256.8 

Lo Mean 99.8 176.9 276.7 117.5 137.4 254.9 

Lo Max 110.3 167.8 278.0 130.1 132.1 262.2 

SaLo low 69.7 174.0 243.8 91.8 160.4 252.2 

SaLo Mean 91.1 178.9 270.0 114.2 142.6 256.9 

SaLo Max 101.6 172.4 274.0 121.5 138.0 259.5 

SaClLo low 93.7 175.4 269.0 113.6 144.6 258.2 

SaClLo mean 103.8 172.9 276.7 122.2 136.7 258.9 

SaClLo Max 108.9 167.1 276.0 124.8 131.4 256.2 

Lo=loam; SaLo=sandy loam; SaClLo = sandy clay loam 
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Figure 33. Green and Blue maize WF when implemented a farmer empirical irrigation in 2019 for loam, 
sandy loam, and sandy clay loam soils. Lo_l=Loam low end variations; Lo_m=Loam mean variation; 
L_ma=Loam up end variatons; SaLo_l=Sandy Loam low end variations; SaLo_m=Sandy Loam mean 
variation; SaLo_ma=Sandy Loam up end variations; SaClLo_l=Sandy Clay Loam low end variations; 
SaClLo_m=Sandy Clay Loam mean variation; SaClLo_ma=Sandy Clay Loam up end variations. 

 

Figure 34. Green and Blue maize WF when implemented an optimized irrigation in 2019 for loam, sandy 
loam, and sandy clay loam soils. Lo_l=Loam low end variations; Lo_m=Loam mean variation; L_ma=Loam 
up end variatons; SaLo_l=Sandy Loam low end variations; SaLo_m=Sandy Loam mean variation; 
SaLo_ma=Sandy Loam up end variations; SaClLo_l=Sandy Clay Loam low end variations; SaClLo_m=Sandy 
Clay Loam mean variation; SaClLo_ma=Sandy Clay Loam up end variations. 
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The implementation of the empirical irrigation scenario in 2020 resulted in significant 
variations among the various scenarios (Figure 35), but also scored the largest total WF (330 m3/t) 
among all the years. Within the loam textural class, total WF showed values that ranged from 
199 m3/t to 284 m3/t, a difference almost equal to 90 m3/t (Table 41). Even more strikingly, in 
the case of sandy clay loam total WF plummeted from 330 m3/t for max scenario to 200 m3/t for 
low scenario. The contribution of the green WF component was found to be almost identical to 
this of 2019, fluctuating between 26% and 41%. 

When the optimal irrigation was implemented, the variations within classes were minimized 
resulted in an average total WF equal to 270 m3/t (Figure 36). It should be mentioned that while 
in all the implemented scenarios the total WF under optimal irrigation was found to be lower 
than that of the empirical (8-26%), while in the case of the sandy clay loam low scenario the 
empirical irrigation was found to perform better by roughly 30%. The overall contribution of the 
green WF component was found to be substantially higher when compared to the empirical one 
showing values 37%-53% 

Table 41. Descriptive WF data for empirical and optimal irrigated maize fields in 2020. 

 Empirical Optimal 

 WF_green WF_blue WF WF_green WF_blue WF 

Lo low 95.40 189.48 284.88 123.9 144.9 268.7 

Lo Mean 111.18 186.86 298.04 133.7 138.3 272.0 

Lo Max 142.38 199.18 341.56 152.7 132.4 285.1 

SaLo low 68.24 189.48 257.72 99.0 165.2 264.1 

SaLo Mean 98.45 191.55 290.00 116.0 149.4 265.5 

SaLo Max 125.72 205.24 330.96 129.8 137.6 267.4 

SaClLo low 76.19 127.87 204.05 121.3 150.1 271.4 

SaClLo mean 111.85 184.18 296.03 134.4 140.3 274.6 

SaClLo Max 132.54 199.18 331.72 140.3 137.6 277.9 

Lo=loam; SaLo=sandy loam; SaClLo = sandy clay loam 
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Figure 35. Green and Blue maize WF when implemented a farmer empirical irrigation in 2020 for loam, 
sandy loam, and sandy clay loam soils. Lo_l=Loam low end variations; Lo_m=Loam mean variation; 
L_ma=Loam up end variatons; SaLo_l=Sandy Loam low end variations; SaLo_m=Sandy Loam mean 
variation; SaLo_ma=Sandy Loam up end variations; SaClLo_l=Sandy Clay Loam low end variations; 
SaClLo_m=Sandy Clay Loam mean variation; SaClLo_ma=Sandy Clay Loam up end variations. 

 

Figure 36. Green and Blue maize WF when implemented an optimized irrigation in 2020 for loam, sandy 
loam, and sandy clay loam soils. Lo_l=Loam low end variations; Lo_m=Loam mean variation; L_ma=Loam 
up end variatons; SaLo_l=Sandy Loam low end variations; SaLo_m=Sandy Loam mean variation; 
SaLo_ma=Sandy Loam up end variations; SaClLo_l=Sandy Clay Loam low end variations; SaClLo_m=Sandy 
Clay Loam mean variation; SaClLo_ma=Sandy Clay Loam up end variations. 
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Overall, the results of the WF analysis showed that the optimal irrigation scenario achieved 
to considerably reduce the total WF of the maize crop and increased the rational use of the study 
area available water resources in the study area. This improvement is mostly attributed to the 
fact that in the case of optimized irrigation, the contribution of the green WF component was 
larger than that in the case of empirical irrigation. Moreover, a most consistent WF performance 
was observed when the former irrigation scenario was implemented, even among the years, 
showing that this approach can be used as a mean by the governmental public services to define 
maize crop benchmark WF limits for e.g., new CAP 2023-27 conditionality targes and thus use a 
meaningful way to evaluate the farmer performance realistically. 
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