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Introduction  

Unsustainable use of forests, uncontrolled and excessive tree cuts, infrastructure projects, 

mining, intensive grazing, pests, diseases and forest fires are named as the main causes of 

deforestation and forest degradation in Georgia. The result of this is a significant decrease and 

degradation of forest area and the latter in itself threatens animal and plant habitats and reduces 

the ability of forests to provide basic services (IUCN 2021). Deforestation and forest degradation 

also negatively impact ecosystem services, damage is caused to soil, water balances inside and 

outside forests, carbon sequestration, and biodiversity (Asner et al. 2009a). It should be noted 

that in Georgia, as elsewhere in the world, a large part of the population depends on both - wood 

and non-wood forest resources. According to the National Forest Concept for Georgia, the 

national forest of Georgia is vital for the security and well-being of the population, as well as for 

the development of various fields of the country's economy. The forest provides a significant part 

of the population of Georgia with clean water. Water supply to the sectors of the economy 

(agriculture, hydropower, etc.) depends on the healthy state of forest ecosystems. Forest 

determines water quality and reduces the risk of flash floods and floods by regulating surface 

run-off of sediments. It prevents the development of soil erosion, reduces the risk of landslides, 

avalanches, and mudflows, and mitigates their impact. By absorbing carbon from the atmosphere 

and sequestering it into forest mass and soil, the forest plays an important role in the global 

carbon cycle. These regulatory functions of the forest are important for developing hydropower 

(a healthy forest reduces river sediments and prevents reservoirs from filling up) and agriculture 

(protection against soil erosion, pest control, pollination of agricultural crops, etc.). The forests 

of Georgia are of great aesthetic and recreational value. They have a huge role in the growth of 

the country's tourism potential and the income associated with this activity. The existence and 

development of many resorts and various types of tourism depend on forest ecosystems. In 

addition, the forests of Georgia are of great scientific, historical, spiritual, and cultural 

significance (The National Forest Concept for Georgia, 2013). 

Among different ecosystems, wetland forests are of particular importance as they represent a 

complex ecosystem and are characterized by unique plant and animal species. A wetland 

environment creates a precondition not only for biodiversity but is also important for humans 

whose habitat has expanded rapidly in recent decades and has rapidly invaded biomes it 

previously avoided. Wetland forests are multifunctional and noteworthy ecosystems for humans. 

For example, territories covered with wetland forests can conserve and improve water quality, 

so uncontrolled logging is often a precondition for a significant change (Binkley and Brown 1993). 

Also worth mentioning are coastal wetland forests and their role in soil stabilization when they 

stabilize and protect the coastline from erosion by their roots (Gedan et al. 2010). Wetland 

forests are also known for their ability to reduce flood risks (Acreman and Holden 2013), which 

is also a prerequisite for human well-being. Thus, assessing the health and sustainability of 

wetland ecosystems is a major challenge. Despite this, assessing the state of the forest, 

especially in wetlands, is a difficult task and its assessment by classical methods is not always 

possible as moving through the forest and conducting field research are associated with huge 

efforts and financial costs. 

To study large areas and hard-to-reach places, remote sensing technology is used which is a 

particularly practical tool for in-depth assessment and monitoring of processes taking place in 

the forest ecosystem (Asner et al. 2009b). The rapid development of satellite technologies has 
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led to the ability to assess forests and their structure with high accuracy, for which reason the 

quality of mapping has significantly improved (McRoberts at al 2010). In addition, the possibility 

of using free high-resolution satellite multispectral images should be noted. The Sentinel and 

Landsat missions are particularly famous. For example, free Landsat images have been available 

since 1972, enabling long-standing data to study forest changes. 

Forest changes are mostly characterized by anthropogenic impacts and can be divided into two 

categories: deforestation when the forest cover is completely reduced in the given area or 

degradation when the structure of the forest changes and accordingly, its functional abilities 

change (Hosonuma et al 2012). 

Defining reduction or increase in the area covered with trees is not a novelty in the remote 

sensing field (Hansen et al. 2013). For example, Global Forest Watch (GFW) suggests a global 

map for forest cover change which is based on Landsat images and hosted on a web portal that 

allows users to track forest cover change (decrease/increase) throughout the year (Rosi et al 

2019). There are also other models, satellite images, and approaches to identify changes in forest 

cover in landscapes and terrains of different complexity (Giannetti et al 2021; Mikeladze et al 

2020). However, despite existing technologies, assessing and mapping the dynamics of wetland 

forests still remains a technological challenge as the structure of such forests is complex and 

multilayered and the reduction or growth of trees is difficult to detect from satellites. 

Determining forest degradation using satellite images is even more difficult than determining 

deforestation because forest degradation indicates functional disorders in the forest that are 

difficult to detect from satellite images. An obvious example of this is the decrease in the density 

of trees in the forest due to selective cuts when the forest structure is disrupted, but the forest 

cover is preserved. 

The main purpose of this study was to develop and test a satellite-based model of wetland forest 

change in Kolkheti that would reveal the extent of both deforestation and forest degradation. 

An important study condition was also to use free, multispectral images of the Sentinel-2 satellite 

using open-source applications. 

Methodology 

Pilot Area 

Within the framework of the PONTOS Project, Kolkheti wetland forests were selected as a pilot 

area, which is located between the Enguri and Supsa rivers and extends to the Kolkheti lowland 

including Katsoburi Managed Reserve. Kolkheti National Park (founded in 1999) is an important 

part of the pilot area. The area of the Kolkheti National Park is 44960.7 hectares, of which the 

land area is 29017.7 hectares, and the sea area between the estuaries of the rivers Rioni and 

Churia is 15877.4 hectares. The following zones have been identified on the territory of the 

Kolkheti National Park: strict protection zone – 28 035 hectares, of which 15,276 is the water 

area; managed protection zone - 961 hectares and c) traditional use zone - 15313 hectares. In 

addition, the territory is protected by the Ramsar Convention (Ramsar site since 1996), and at 

the same time is Emerald site (since 2018). In 2021, the World Heritage Committee enlisted the 

Kolkhuri Forests and Wetlands on the UNESCO World Heritage List which represents part of the 

Caucasus Ecoregion and a global biodiversity hotspot (Mittermeier et al. 2004, Williams et al. 

2006). 
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Kolkheti has a warm temperate climate. Summers are moderately warm (24-25°С) and winters 

are cool (4-6°С), the average annual precipitation is high and amounts to 1800-2200 mm 

(Nakhutsrishvili et al. 2011). The humid lowland of Kolkheti is covered by endemic alder forests 

and the wetlands connected to it (including unique percolating bogs) belonging to the tertiary 

flora of Kolkhuri refugium (Garsteki et al., 2017) and classified as temperate rainforests 

(Nakhutsrishvili, Zazanashvili & Batsatsashvili, 2011). Peatlands are closely connected with the 

forests of the Kolkheti lowland, forming a unified wetland system. In the forest, common alder 

(Alnus glutinosa) grows directly on the swamp, mainly on the wetland territories of Sphagnum, 

sedge, and mixed grasses (Ketskhoveli, 1959). In addition to alder, other plants can be found in 

forest swamps: Pterocarya pterocarpa, Frangula alnus, Carpinus caucasica, Ficus carica, Quercus 

hartwissiana (Ketskhoveli 1959). 

Pre-processing of S2 Products 

To ascertain forest changes, two methods were tested: (1) forest cover multispectral 

classification and (2) Multivariate Alteration Detection. Orthorectified multispectral Sentinel-2A 

images with 13 spectral bands and a spatial resolution of 10, 20, and 60 meters were used to 

analyze the changes. The images were downloaded from the Copernicus data portal 

(https://scihub.copernicus.eu/dhus/#/home). For comparative analysis, the spectral bands of 

the September 2016 and 2021 images were selected. To improve the quality of the interpretation 

of satellite images for the spectral bands, an atmospheric correction was performed. 

The Sen2Cor tool, a Sentinel-2 Level 2A generation and formatting processor, was used for image 

atmospheric correction. The reflectance image of the lower 2A level of the atmosphere was 

developed based on the following parameters: solar zenith angle, sensor viewing angle, relative 

azimuth angle, surface height above sea level, visibility, and type of aerosols. Parameters were 

obtained from image metadata, except for altitude and aerosol types, which were determined 

by specific location. Thus, Sentinel-2 channels were created and prepared for analysis. 

Creating Forest Mask in the Pilot Area 

Image classification was performed using the Random Forest (RF) algorithm of the SAGA-System 

for Automated Geoscientific Analyses software. Random Forest (RF), as its name suggests, 

consists of decision trees that act as an ensemble. Each tree in the Random Forest predicts a 

certain class, and the class characterized by the maximum score becomes the determinant of 

the model (Breiman 2001). To train the algorithm, training, and validation data were created. 

The samples were made by photo interpretation using high-resolution images (Google imagery, 

World View 2, World View 3) provided in advance by the PONTOS project. In total, 124 training 

plots were created with a total area of 1439.71 hectares. The training data were categorized 

into seven land cover classes: bare ground, coniferous forest, deciduous forest, grass cover, and 

water bodies (lakes and rivers). Agricultural lands were grouped either into the class of grass 

cover or bare land. As already mentioned, the classification was carried out in two sets, 2016 

and 2021, of spectral channels, where the composition of each set was determined by the 

following channels (B02, B03, B04, B05, B06, B07, B08, B8A, B11, B12). The training data was 

selected based on the principle that the sample area equally reflected the state of both 2016 

and 2021. Samples were not taken in areas, where the land cover category changed over a given 

time period, for example, forest/grass cover; arable land/forest). 

Thus, a full combination of spectral bands was used, where from the most statistically significant 

variables turned out to be B12 and B11 (see Table 1), which is not surprising since SWIR-shortwave 

https://scihub.copernicus.eu/dhus/#/home
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near-infrared channels are known for their good ability to identify (classification) forest species 

and forest cover (Grabska et al 2019; Immitzer et al 2016). 

 

 

Variable Assessment 

B12 
100.00 |||||||||||||||||||||||||||||||||||||||||

||||||| 

B11 80.81 |||||||||||||||||||||||||||||||||||||| 

B04 80.64 |||||||||||||||||||||||||||||||||||||| 

B07 59.95 |||||||||||||||||||||||||||| 

B08 51.42 |||||||||||||||||||||||| 

B03 49.96 ||||||||||||||||||||||| 

B06 49.07 ||||||||||||||||||||||| 

B05 47.96 ||||||||||||||||||||||| 

B02 39.31 |||||||||||||||||| 

Table 1. The table shows the importance of spectral variables in the classification and modeling process 

 

In the end, two classified images were created with 7 classes each. During the post-processing, 

not forest classes were merged, and only two - forest and non-forest area classes were 

highlighted using classification editing. To generalize the data, forest stand areas were filtered 

into small clusters of pixels not exceeding 0.5 hectares, as spectral classification errors occurred 

in smaller forest areas. As a result, we got clearer and cartographically readable data. 

Accuracy was assessed with 396 point validation data, which were identified using very high-

resolution satellite imagery (Llano 2022), and their number was determined taking into account 

the area of classification classes (Olofsson et al. 2013). The statistical accuracy of the 

classification was reflected using a confusion matrix where the overall accuracy for the 2016 

image was 0.974 and 0.957 for the 2021 image (see image 1). 

 

Confusion matrix 2016       

  

Classified values         

1 (Not 

Forest) 

2 

(Forest) 

Tot

al 

User 

accura

cy 

Total 

class 

area 

(km²) 

Wi 

Thematic raster 1 237 4 241 0.9834 648.07 0.607 

classes 2 6 149 155 0.9612 418.931 0.392 

  total 243 153 396   1067.00   

  
Producer 

accuracy 
0.97531 

0.9738

6 
  

0.974

7 
    

Overall Accuracy:             

0.974        

Confusion matrix 2021       

  

Classified values         

1 (Not 

Forest) 

2 

(Forest) 

Tot

al 

User 

accura

cy 

Total 

class 

area 

(km²) 

Wi 

Thematic raster 1 235 10 245 0.9591 645.841 0.605 

classes 2 7 144 151 0.9536 421.160 0.394 
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  total 242 154 396   1067.00   

  
Producer 

accuracy 
0.97107 

0.9350

6 
  

0.957

0 
    

Overall Accuracy:             

0.957        

Table 1. The confusion matrix used to assess the accuracy of forest cover classification in 2016 and 2021 is shown on 

the picture 

Multivariate Alteration Detection 

4 methods were tested for determining changes in the forest but only one of them fully reflected 

the processes taking place in the forest. Images based on NDVI and LAI images did not work 

because they did not show the changes in the multilayered forests (see Image 2). The best 

methods were selected by visually comparing the output models with very high-resolution images 

that clearly showed changes in the forests. Comparing 2016 and 2021 forest cover proved to be 

semi-useful, as we only got the net loss of trees due to deforestation. The best solution turned 

out to be the use of the Multivariate Alteration Detection (MAD) algorithm as with the help of 

this method both areas of deforestation and forest degradation were identified. 

           

                                                                     

Picture 2. 4 methods to detect changes in the forest and scheme for their selection 

Multivariate Alteration Detection (MAD) algorithm performs change detection between two 

multispectral images (Nielsen & Conradsen 1998). The MAD algorithm is used for the accurate 

detection of spatial changes in coherent patterns in satellite images. This method proved to be 

more effective than other traditional methods. For example, the MAD transformation turned out 

to be effective for removing incoherent noise from image data and for the detection of anomalies 

(Nielsen & Conradsen 1998, Nielsen 2007). 

The change detection process was performed using Orfeo ToolBox (OTB) 8.0. Comparable images 

from both 2016 and 2021 were compiled with a set of full spectral bands (B02, B03, B04, B05, 

B06, B07, B08, B8A, B11, B12). As a result, we got a multi-channel composite image, the channels 

of which showed the changes in pixel values between 2016-2021. The pixel change gradation 

ranged from -1 to 1 where negative values were associated with a decrease in tree density and 
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positive values with an increase in tree density. Upon visual inspection, we found that the B12 

channel of the received image, compared with other spectral channels, most accurately (did not 

consider the undergrowth values) showed changes in the forest. The received model was 

compared with high-resolution World View 2 images (See Pictures 3-4).  

    
 

 
 
Picture 3. WV 2016 and 2021 images taken near village Nigvziani (PSh. RGB 6,7,5) above, and the change model 
obtained by the MAD algorithm of the same area (below), where red pixels show tree loses and green pixels show the 
gain. 
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Picture 4. WV 2016 and 2021 images taken near Churia river (PSh. RGB 6,7,5) above, and the change model obtained 
by the MAD algorithm of the same area (below), where red pixels show tree loses and green pixels show the gain.  

Results 

As a result of the processing of spectral images, the following were created: 1) discrete images 

of forest/not forest covers (forest mask-2016, 2021), and 2) a MAD model with continuous values 

of forest tree density change between 2016 and 2021. 

The forest cover (forest mask) image is binary data represented by just two values: (1) forested 

area, (0) non-forested area. Broadleaf and coniferous forest stands, and forest massifs were 

combined in the forested area. Based on the Sentinel-2s spatial resolution, the smallest area 

where forest cover has been detected is 10 x 10 square meters. Despite this, the size of the 

smallest mapping unit (MMU) is 0.5 hectares as the image obtained as a result of the classification 

process has been filtered to eliminate existing gaps and noise. In the end, we obtained 1:30,000 

scale forest cover images of 2016 and 2021 whereby forest areas were estimated in the next 

stages of the project (See Image 5). 

 
Image 5. Forest cover map (forest/non-forest) 

 

The MAD model with continuous values of tree density change shows change in values, which in 

our study ranges from -1 to 1 and is expressed in absolute values. The further the value is from 

0, the more changes have occurred in the forest. Negative values indicate the degree of 
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deforestation, while positive values indicate forest regeneration or an increase in biomass. Low 

values are characterized by those places that are under the high anthropogenic influence or were 

under the high anthropogenic influence during the past years, for example, felling areas, 

roadside forest stands, places of intense flooding, etc. The degree of change increases where 

human settlements are located close to the forest or where forest stands are highly fragmented. 

The image values were later converted to percentages to characterize the changes in the forest 

canopy better. The MAD model of forest cover change reflects any change that occurs in forest 

cover; therefore, the map shows not only a net loss of woody biomass* > 90% but also a loss of 

trees of degraded forest areas 20-90%. Tree biomass can be an individual or group of trees 

occupying a given area unit (Briggs 1994). 

 

Based on the obtained model, seven conditional categories of changes in tree biomass were 

identified in the pilot area covered with forest: 

1. Loss of tree biomass >90% 

2. Loss of tree biomass > 65-90% 

3. Loss of tree biomass > 20-65% 

4. No change (slight increase or decrease in trees) 

5. Increase in tree biomass > 20-65% 

6. Increase in tree biomass > 65-90% 

7. Increase in tree biomass > 90% 

 

According to this, it is possible to discuss the processes of forest restoration or degradation, 

because forest areas where the loss of tree biomass is more than 90% can be considered 

deforested, and those areas of the forest where the total biomass of trees decreases from 20 to 

65%, can be conditionally considered as degradation.  

  
Picture 6. MAD change model and borders of Kolkheti National Park. Red pixels show tree loss, while green pixels 

show an increase in tree biomass. 
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As a result, we got a map showing the percentage ratio of decrease or increase in trees in the 

forest cover. The map can be used to assess anthropogenic activities and natural processes in 

the forest part of the pilot area (see map 6). 

 
Table 2. The percentage ratio of tree biomass decrease and increase in different forest categories. 

 

Discussion 

In this study, we identified areas of degradation and deforestation of the Kolkheti Lowland 

forests which were calculated using the Multivariate Alteration Detector (MAD) algorithm. The 

model clearly shows the dynamics of the processes taking place in the forest in recent years. 

High model values show the possibility of determining the complete reduction or increase in the 

forest area which is a sign of deforestation. Medium and low values indicate structural changes 

in forest cover in a particular time interval, which indicates forest degradation, restoration, or 

other ecological processes. To establish forest changes, both spectral and spatial resolution were 

found to be sufficient to create models which is also proved by field trials and comparison with 

very high-resolution satellite imagery. 

 

It should be noted that other types of models, such as the leaf area index LAI and NDVI, were 

also tested to estimate deforestation and degradation, but due to the complex structure of 

forests in the study area and the multi-layered vegetation, the use of LAI was not possible. For 

example, when comparing models, in a number of felling areas, the LAI values increased instead 

of decreasing because only the trees forming the upper layer were cut in the forest and the 
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undergrowth remained unchanged. It should be noted that the vegetation of the lower forest 

layer was characterized by higher LAI and NDVI values than the trees and plants of the upper 

forest layer, which caused errors in the results. To solve the problem, more complex algorithms 

were used that take into account images composed of spectral channels in the calculations. As 

a result, using the MAD algorithm, the change was determined only in the upper layer of the 

forest cover. In this process, the B11 Sentinel-2 spectral channel turned out to be especially 

important, since with the help of this variable, it became possible to separate the vegetation of 

different layers from each other. 

 

The model clearly shows areas of deforestation and degradation, which are present in almost the 

entire zone of the study area. The scale of deforestation in this time interval is quite small 

compared to the total area of Kolkheti forests which indicates the specifics of anthropogenic 

activities. During the last 6 years, large-scale clear-cutting has not been carried out in the forest, 

which possibly indicates a low commercial interest of the population toward timber extraction. 

Unfortunately, the opposite appears with respect to forest degradation the scale of which covers 

almost the entire territory and is especially noticeable near settlements and unprotected areas. 

The degradation is especially noticeable in the forest area between Munchia and Khobistskali 

rivers. According to our model, the state of the forest is also affected by the presence of a 

protected area - the Kolkheti National Park. The forest located within its boundaries is healthier. 

Apart from deforestation and degradation, there is also a process of forest regeneration which 

is observed mainly in the territory of the Kolkheti National Park and probably should be 

associated with changes in the hydrological regime and climate, since an increase in tree biomass 

is observed in places where the forest was previously heavily flooded, however, now the intensity 

of flooding may be decreased. 

 

Our model is much more sensitive toward the changes in forests than the GFW model (Hansen et 

al. 2013). 715 hectares of deforestation were identified, when there is practically no 

deforestation on the GFW map in the specified time interval. Another forest degradation model 

that was created based on a 32-year Landsat serial analysis for the territory of Georgia should 

also be noted (Chen et al. 202) however, the results could not be compared as the study material 

was not available. It should be noted that, in addition to the above studies, the dynamics of the 

forest of the pilot area were not evaluated. Therefore, our study is the first within the framework 

in which it became possible to determine the change of the forest cover quantitatively. Thus, at 

this stage, the modeling methodology (Annex 1 Flowchart of work) is applicable only to lowland 

areas. However, we think that in the future it will be possible to create a universal model that 

will work for mountainous areas where the forest vegetation is different, and the slopes are 

steep and rugged. 

Findings and recommendations 

Based on Sentinel-2 multispectral satellite images, maps of forest loss and degradation were 

created on the Kolkheti lowland, in particular, on the territory of the Kolkheti wetland forests. 

The results showed that forest change is mainly associated with human activities and is quite 

intense in areas where forest protection is not carried out by the Agency of Protected Areas. 

Forest change is more related to forest degradation than to deforestation since the harvesting 

of timber by the population is mainly carried out through selective cuts. In the study area, not 

only degradation is observed, but also forest regeneration, which, in our opinion, is related to 

climate and hydrological regime changes leading to an increase in tree biomass. Various methods 
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were tested to determine changes in the forest, however, depending on the specifics of the 

forest structure and cuts (felling area), it was best to observe the forest dynamics using a set of 

spectral channels and a Multivariate Alteration Detection MAD. The model’s accuracy was 

determined by comparison with very high-resolution Maxar images, where forest reduction or 

growth was visible at the individual tree level. Based on the objectives of the project, no tree 

biomass in the field was estimated at this stage, for which reason accuracy verification 

statistically could not be performed. Despite this, for the first time, a change model has been 

created for the forests of Kolkheti, which can be used by forest management authorities 

(Administration of Protected Areas, Agency of Protected Areas, National Forestry Agency, 

Forestry Agency of Adjara, etc.) and environmental organizations for forest/biodiversity 

monitoring and effective zoning. Considering the methodology and results presented in this 

study, it is advisable to continue the assessment of biomass and prepare scientific publications, 

also, to prepare a policy paper for decision-makers and other stakeholders outlining what needs 

to be done at the policy/legislative level for this study to contribute to biodiversity monitoring 

and the monitoring results to influence decision-making related to management. The same 

publication will assess the impact of current forest management practices on the 

environment/biodiversity. 

 

 

 

 
 

Kolkheti National Part, Colchic forests, Part of the UNESCO World Heritage  
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Kolkheti lowland forests, degraded after the clear cuts. 

 

 
Kolkheti lowland forests, degraded after the clear cuts. 
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Common alder (Alnus glutinosa) grows directly on the swamp. 

 

 
 

Artificial stands of maritime pines (Pinus pinaster).  
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Annex 1 (Flowchart of work) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Sentinel 2 

1. Radiometric and atmospheric 

correction (Sen2Cor) 

Supervised Classification (RF) 

 C 

Forest Mask (Merged) 

NDVI 

Forest Mask 2021 

LAI MAD 

Ground truth data 

Comparison of different methods, selection of the optimal one 

Forest change map 

Forest Mask 2016 

MAD 
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